【題目】問(wèn)題探究:
(1)如圖1,在△ABC中,∠B=90,AB=3,BC=4,若△ABC的邊上存在點(diǎn)P,使△ABP是以AB為腰的等腰三角形,則CP的長(zhǎng)為_(kāi)_____;
(2)如圖2,在矩形ABCD中,AB=3,邊BC上存在點(diǎn)P,使∠APD=90,求矩形ABCD面積的最小值.
問(wèn)題解決:
(3)如圖3,在四邊形ABCD中,AB=3,∠A=∠B=90,∠C=45,邊CD上存在點(diǎn)P,使∠APB=60°,在此條件下,四邊形ABCD的面積是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) 1或或2;(2) 矩形ABCD面積的最小值為18;(3)存在,+.
【解析】(1)分三種情形分別求解即可;
(2)如圖2中,當(dāng)以AD為直徑的⊙O與BC相切時(shí),切點(diǎn)為P,此時(shí)∠APD=90°,AD的長(zhǎng)最。蟪AD的長(zhǎng)即可解決問(wèn)題;
(3)存在.如圖3中,如圖作等邊三角形ABM的外接圓⊙O,當(dāng)直線CD與⊙O相切與P時(shí),四邊形ABCD的面積最大,此時(shí)滿足條件∠APB=∠AMB=60°.想辦法求出AD、AB即可解決問(wèn)題;
(1)如圖1中,作BH⊥AC.
在Rt△ABC中,∵∠ABC=90°,AB=3,BC=4,∴AC==5.
∵ABBC=ACBH,∴BH=.在Rt△ABH中,AH==,分三種情況討論:
①當(dāng)BA=BP1時(shí),PC1=4﹣3=1.
②當(dāng)BA=BP2時(shí).∵BH⊥AP2,∴AH=HP2=,∴CP2=AC﹣AP2=5﹣=.
③當(dāng)AB=AP3時(shí),CP3=5﹣3=2.
綜上所述:滿足條件的PC的值為1或或2.
故答案為:1或或2.
(2)如圖2中,當(dāng)以AD為直徑的⊙O與BC相切時(shí),切點(diǎn)為P,此時(shí)∠APD=90°,AD的長(zhǎng)最小.
連接OP.則OP⊥BC,易證四邊形BPO,四邊形CDOP都是正方形,∴BC=AD=6,AB=CD=3,∴矩形ABCD面積的最小值為18.
(3)存在.如圖3中,如圖作等邊三角形ABM的外接圓⊙O,當(dāng)直線CD與⊙O相切與P時(shí),四邊形ABCD的面積最大,此時(shí)滿足條件∠APB=∠AMB=60°.
延長(zhǎng)MO交AB與E,作OF⊥AD與F,PT⊥BC與T,連接OP.,PT交OM于R.
∵AB=3,AD∥BC,∠C=45°,∴CD=AB=3.
∵△ABM是等邊三角形,四邊形AEOF是矩形,∴AE=EB=NR=RT=,AF=EO=,OM=OP=,OR=PR=,∴BT=AN=+,PN=DN=TN﹣PT=3﹣﹣=,∴AD=AN﹣DN=﹣()=,BC=BT+CT=++=,∴S四邊形ABCD=AB=()=+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車(chē)”和“網(wǎng)購(gòu)”給我們帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息求出=___________,=_____________;
(2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生種,大約有多少人最認(rèn)可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】股民王曉宇上周五在股市以收盤(pán)價(jià)(股市收市時(shí)的價(jià)格)每股24元購(gòu)買(mǎi)進(jìn)某公司股票1000股,周六、周日股市不交易,在接下來(lái)的一周交易日內(nèi),王曉宇記下該股每日收盤(pán)價(jià)格相比前一天的漲跌情況如下表:(單位:元)
(1)星期三收盤(pán)時(shí),每股是多少元?
(2)已知小明父親買(mǎi)進(jìn)股票時(shí)付了1.5‰的手續(xù)費(fèi),賣(mài)出時(shí)需付成交額的1.5‰的手續(xù)費(fèi)和1‰的交易稅,如果他在周五收盤(pán)前將全部股票賣(mài)出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,射線OM平分∠AOC,ON平分∠BOC.
(1)如果∠BOC=30°,求∠MON的度數(shù);
(2)如果∠AOB=α,∠BOC=30°,其他條件不變,求∠MON的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)化簡(jiǎn)求值: 2(x2y+xy)-3(x2y-xy)-4x2y,其中x=-1,y=.
(2)解答:老師在黑板上書(shū)寫(xiě)了一個(gè)正確的演算過(guò)程,隨后用手掌捂住了一個(gè)多項(xiàng)式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.求所捂的多項(xiàng)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,滑動(dòng)調(diào)節(jié)式遮陽(yáng)傘的立柱垂直于地面,為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為,為中點(diǎn),,,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)與重合(圖2).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽(yáng)光線與垂直時(shí),遮陽(yáng)效果最佳.
(1)上午10:00時(shí),太陽(yáng)光線與地面的夾角為(圖3),為使遮陽(yáng)效果最佳,點(diǎn)需從上調(diào)多少距離?(結(jié)果精確到)
(2)中午12:00時(shí),太陽(yáng)光線與地面垂直(圖4),為使遮陽(yáng)效果最佳,點(diǎn)在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到)
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn),.
(1)判斷頂點(diǎn)是否在直線上,并說(shuō)明理由.
(2)如圖1,若二次函數(shù)圖象也經(jīng)過(guò)點(diǎn),,且,根據(jù)圖象,寫(xiě)出的取值范圍.
(3)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)在內(nèi),若點(diǎn),都在二次函數(shù)圖象上,試比較與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com