【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(1)如圖①,當(dāng)直線l與⊙O相切于點C時,求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點E,F(xiàn)時,求證:∠DAE=∠BAF.
【答案】
(1)解:連接OC,
∵直線l與⊙O相切于點C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB
(2)解:如圖②,連接BF,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE.
【解析】(1)連接OC,易得OC∥AD,根據(jù)平行線的性質(zhì)就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結(jié)論;(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),繼而證得結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸,y軸于A,B兩點,拋物線y=x2+bx+c經(jīng)過A,B兩點,點C是拋物線與x軸的另一個交點(與點A不重合),點D是拋物線的頂點,請解答下列問題.
(1)求拋物線的解析式;
(2)判斷△BCD的形狀,并說明理由;
(3)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標出圖中的直角),并分別寫出所拼四邊形的對角線的長.(只需寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BDE中,∠BDE=90°,BD=6 ,點D的坐標是(7,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點C在BD上,則旋轉(zhuǎn)中心的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(﹣1,0),與y軸的交點坐標為(0,3).
(1)求出b、c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍;
(3)當(dāng)2≤x≤4時,求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)盤,那么可直接獲得10元的購物券.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,連接CP.下列結(jié)論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com