(2010•大連)如圖是一張長(zhǎng)9cm、寬5cm的矩形紙板,將紙板四個(gè)角各剪去一個(gè)同樣的正方形,可制成底面積是12cm2的一個(gè)無(wú)蓋長(zhǎng)方體紙盒,設(shè)剪去的正方形邊長(zhǎng)為xcm,則可列出關(guān)于x的方程為   
【答案】分析:由于剪去的正方形邊長(zhǎng)為xcm,那么長(zhǎng)方體紙盒的底面的長(zhǎng)為(9-2x),寬為(5-2x),然后根據(jù)底面積是12cm2即可列出方程.
解答:解:設(shè)剪去的正方形邊長(zhǎng)為xcm,
依題意得(9-2x)•(5-2x)=12,
故填空答案:(9-2x)•(5-2x)=12.
點(diǎn)評(píng):此題首先要注意讀懂題意,正確理解題意,然后才能利用題目的數(shù)量關(guān)系列出方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•大連)如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點(diǎn)C,直線L1經(jīng)過(guò)點(diǎn)C且平行于x軸,將L1向上平移t個(gè)單位得到直線L2,設(shè)L1與拋物線F的交點(diǎn)為C、D,L2與拋物線F的交點(diǎn)為A、B,連接AC、BC.
(1)當(dāng),c=1,t=2時(shí),探究△ABC的形狀,并說(shuō)明理由;
(2)若△ABC為直角三角形,求t的值(用含a的式子表示);
(3)在(2)的條件下,若點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A’恰好在拋物線F的對(duì)稱(chēng)軸上,連接A’C,BD,求四邊形A’CDB的面積(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•大連)如圖,直線1:與x軸、y軸分別相交于點(diǎn)A、B,△AOB與△ACB關(guān)于直線l對(duì)稱(chēng),則點(diǎn)C的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省大連市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•大連)如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點(diǎn)C,直線L1經(jīng)過(guò)點(diǎn)C且平行于x軸,將L1向上平移t個(gè)單位得到直線L2,設(shè)L1與拋物線F的交點(diǎn)為C、D,L2與拋物線F的交點(diǎn)為A、B,連接AC、BC.
(1)當(dāng),,c=1,t=2時(shí),探究△ABC的形狀,并說(shuō)明理由;
(2)若△ABC為直角三角形,求t的值(用含a的式子表示);
(3)在(2)的條件下,若點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A’恰好在拋物線F的對(duì)稱(chēng)軸上,連接A’C,BD,求四邊形A’CDB的面積(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省大連市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•大連)如圖,直線1:與x軸、y軸分別相交于點(diǎn)A、B,△AOB與△ACB關(guān)于直線l對(duì)稱(chēng),則點(diǎn)C的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:填空題

(2010•大連)如圖,正方形ABCD的邊長(zhǎng)為2,E、F、G、H分別為各邊中點(diǎn),EG、FH相交于點(diǎn)O,以O(shè)為圓心,OE為半徑畫(huà)圓,則圖中陰影部分的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案