【題目】如圖,正方形ABCD和正方形CEFC中,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),EH與CF交于點(diǎn)O.
(1)求證:HC=HF.
(2)求HE的長.
【答案】(1)見解析;(2)HE=.
【解析】
(1)利用直角三角形斜邊上的中線等于斜邊的一半求解即可;
(2)分別求得HO和OE的長后即可求得HE的長.
(1)證明:∵AC、CF分別是正方形ABCD和正方形CGFE的對角線,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
又∵H是AF的中點(diǎn),
∴CH=HF;
(2)∵CH=HF,EC=EF,
∴點(diǎn)H和點(diǎn)E都在線段CF的中垂線上,
∴HE是CF的中垂線,
∴點(diǎn)H和點(diǎn)O是線段AF和CF的中點(diǎn),
∴OH=AC,
在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,
∴AC=,
∴CF=3,
又OE是等腰直角△CEF斜邊上的高,
∴OE=,
∴HE=HO+OE=2;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程-2x+m+4020=0存在整數(shù)解,則正整數(shù)m的所有取值的和為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時(shí),第二次是陽光與地面成30°角時(shí),兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l為x+y=8,點(diǎn)P(x,y)在l上且x>0,y>0,點(diǎn)A的坐標(biāo)為(6,0).
(1)設(shè)△OPA的面積為S,求S與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)當(dāng)S=9時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上有一點(diǎn)M,使OM+MA的和最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2-2ax-3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)求點(diǎn)A的坐標(biāo)及直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E為直線l下方拋物線上一點(diǎn),當(dāng)△ADE的面積的最大值為時(shí),求拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列式子,并完成后面的問題
(1)
(2).
你能利用上述關(guān)系式計(jì)算
(3)利用(1)、(2)得到的結(jié)論,計(jì)算等于多少?并寫出你是怎樣得到的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在開學(xué)前去商場購進(jìn)A、B兩種品牌的足球,購買A品牌足球共花費(fèi)3000元,購買B品牌足球共花費(fèi)1600元,且購買A品牌足球數(shù)量是購買B品牌足球的3倍,已知購買一個(gè)B品牌足球比購買一個(gè)A品牌足球多花30元.(1)求購買一個(gè)A品牌、一個(gè)B品牌足球各需多少元?
(2)為了進(jìn)一步發(fā)展“校園足球”,學(xué)校在開學(xué)后再次購進(jìn)了A、B兩種品牌的足球,每種品牌的足球不少于15個(gè),總花費(fèi)恰好為2268元,且在購買時(shí),商場對兩種品牌的足球的銷售單價(jià)進(jìn)行了調(diào)整,A品牌足球銷售單價(jià)比第一次購買時(shí)提高了8%,B品牌足球按第一次購買時(shí)銷售單價(jià)的9折出售.那么此次有哪些購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用圖形面積可以解釋代數(shù)恒等式的正確性,也可以解釋不等式的正確性.
(1)根據(jù)下列所示圖形寫出一個(gè)代數(shù)恒等式 .
(2)已知正數(shù)a,b,c和m,n,l,滿足ambnclk,試構(gòu)造邊長為k的正方形,利用圖形面積來說明albmcnk2.
思考過程如下:
因?yàn)?/span>ambnclk,所以a,b,c,m,n,l,均 k(填“大于”或“小于”).由于k2可以看成一個(gè)正方形的面積,則al、bm、cn可以分別看成三個(gè)長方形的面積.請畫出圖形,并利用圖形面積來說明albmcnk2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:射線OC在∠AOB的外部,如圖,∠AOB=90°,∠BOC=40°,OM平分∠AOC,ON平分∠BOC.
(1)請?jiān)趫D中補(bǔ)全圖形;
(2)求∠MON的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com