(2011•虹口區(qū)模擬)若點(diǎn)(x0,y0)在函數(shù)y=
k
x
(x<0)
的圖象上,且x0y0=-1,則它的圖象大致是(  )
分析:先根據(jù)x0y0=-1求出k的值,再根據(jù)反比例函數(shù)的性質(zhì)判斷出函數(shù)y=
k
x
的圖象所在象限,由x的取值范圍即可判斷出此函數(shù)的圖象.
解答:解:∵點(diǎn)(x0,y0)在函數(shù)y=
k
x
(x<0)
的圖象上,且x0y0=-1,
∴k=-1,
∴函數(shù)y=-
1
x
的圖象在二四象限,
∵x<0,
∴y>0,
∴函數(shù)y=
k
x
(x<0)
的圖象在第二象限.
故選B.
點(diǎn)評(píng):本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上各點(diǎn)橫縱坐標(biāo)的積是定值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•虹口區(qū)一模)已知拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中,正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•虹口區(qū)一模)在Rt△ABC中,∠ACB=90°,點(diǎn)G是△ABC的重心,且CG=2,則AB長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•虹口區(qū)一模)如圖,在3×4的方格上,每個(gè)方格的邊長(zhǎng)為1個(gè)單位,△ABC的頂點(diǎn)都在方格的格點(diǎn)位置.若點(diǎn)D在格點(diǎn)位置上(與點(diǎn)A不重合),且使△DBC與△ABC相似,則符合條件的點(diǎn)D共有
4
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•虹口區(qū)一模)已知A1、A2、A3是拋物線y=
1
4
x2
上的三點(diǎn),它們相應(yīng)的橫坐標(biāo)為連續(xù)偶數(shù)(n-2)、n、(n+2)(其中n>2),直線A1B1、A2B2、A3B3分別垂直于x軸于點(diǎn)B1、B2、B3,直線A2B2交線段A1B3于點(diǎn)C.
(1)當(dāng)n=4時(shí),如圖1,求線段CA2的長(zhǎng);
(2)如圖2,若將拋物線y=
1
4
x2
改為拋物線y=x2+c(其中c是常數(shù),且c>0).其他條件不變,求線段CA2的長(zhǎng);
(3)若將拋物線y=
1
4
x2
改為拋物線y=ax2+c(其中a、c是常數(shù),且a>0).其他條件不變,求線段CA2的長(zhǎng),并直接寫出結(jié)果(結(jié)果用a、c表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•虹口區(qū)一模)如圖,在矩形ABCD中,AB=4,AD=2,點(diǎn)M是AD的中點(diǎn).點(diǎn)E是邊AB上的一動(dòng)點(diǎn),連接EM并延長(zhǎng)交射線CD于點(diǎn)F,過M作EF的垂線交BC的延長(zhǎng)線于點(diǎn)G,連接EG,交邊DC于點(diǎn)Q.設(shè)AE的長(zhǎng)為x,△EMG的面積為y
(1)求∠MEG的正弦值;
(2)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)線段MG的中點(diǎn)記為點(diǎn)P,連接CP,若△PGC∽△EFQ,求y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案