如圖,AB是⊙O的直徑,OD⊥AC,垂足為D.AC交⊙O于E,∠AOD=∠C
(1)求證:BC是⊙O的切線;
(2)求證:AD•AC=2OA2;
(3)若AE=8,tanA=,求CE的長(zhǎng).

【答案】分析:(1)根據(jù)三角形內(nèi)角和定理可以證明∠ABC=∠ADO=90°,即AB⊥BC,則BC是圓的切線;
(2)首先證明△AOD∽△ACB,利用相似三角形的對(duì)應(yīng)邊的比相等即可證得;
(3)在直角△BAE中利用三角函數(shù)求得BE的長(zhǎng),進(jìn)而利用勾股定理求得AB的長(zhǎng),然后在直角△ABC中利用三角函數(shù)求得BC的長(zhǎng),利用勾股定理求得AC的長(zhǎng),根據(jù)EC=AC-AE即可求解.
解答:證明:(1)∵OD⊥AC,
∴∠ADO=90°,
∵在△AOD和△ACB中,∠A=∠A,∠AOD=∠C,
∴∠ABC=∠ADO=90°,即AB⊥BC,
∴BC是⊙O的切線;

(2)∵在△AOD和△ACB中,∠A=∠A,∠AOD=∠C,
∴△AOD∽△ACB,
=,即=,
∴AD•AC=2OA2;

(3)∵在直角△ABE中,tanA==,
∴BE=AE×=8×=6,
則AB===10,
又∵在直角△ABC中,tanA==,
∴BC=AB=×10=,
AC===,
∴EC=AC-AE=-8=
點(diǎn)評(píng):本題考查了切線的判定定理以及相似三角形的判定與性質(zhì),勾股定理、三角函數(shù),正確求得AB的長(zhǎng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案