【題目】如圖,小陽發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上.量得CD=8米,BC=20米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度為( )

A.9米
B.28米
C.(7+ )米
D.(14+2 )米

【答案】D
【解析】解:如圖,延長AD交BC的延長線于點F,過點D作DE⊥BC的延長線于點E.

∵∠DCE=30°,CD=8米,

∴CE=CDcos∠DCE=8× =4 (米),

∴DE=4米,

設AB=x,EF=y,

∵DE⊥BF,AB⊥BF,

∴△DEF∽△ABF,

= , = …①,

∵1米桿的影長為2米,根據(jù)同一時間物高與影長成正比可得 = …②,

①②聯(lián)立,解得x=(14+2 )米.

所以答案是:D.

【考點精析】利用相似三角形的應用對題目進行判斷即可得到答案,需要熟知測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會向全校1900名學生發(fā)起了愛心捐款活動,為了解捐款情況,學生會隨機調(diào)查了部分學生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖1和圖2,請根據(jù)相關信息,解答系列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為人,圖1中m的值是
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教育部制定《數(shù)學課程標準》要求的課程目標之一是通過數(shù)學學習,學生能夠初步學會運用數(shù)學的思維方式去觀察、分析現(xiàn)實社會,去解決日常生活中和其他學科學習中的問題,增強應用數(shù)學的意識.

看過2003年中央電視臺春節(jié)聯(lián)歡會的人們都知道,魔術節(jié)目很精彩,看后給人以思考、回味,這些看似神秘的魔術節(jié)目,很多都依據(jù)著一定的科學道理,特別是有些還與我們學習的數(shù)學知識有聯(lián)系,請看下面的小魔術:

如圖2所示,魔術師把4張撲克牌放在桌子上,然后蒙住眼睛,請一位觀眾上臺,把某一張牌旋轉(zhuǎn)180°.魔術師解除蒙具后,看到4張撲克牌如圖3所示,他很快確定了哪一張牌被旋轉(zhuǎn)過.

你知道這是怎么回事嗎?試利用所學的數(shù)學知識,寫一篇數(shù)學作文解釋其中的道理,題目自擬,字數(shù)在200~400字之間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價200元,領帶每條定價40元,廠方開展促銷活動期間,向客戶提供兩種優(yōu)惠方法:①買一套西裝送一條領帶;②西裝和領帶均按定價的90%付款。某商店到該服裝廠購買西裝20件,領帶若干條.

1)領帶買多少條時,兩種優(yōu)惠方法相同?

2)購買50條領帶時,應采用哪一種方案更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,二次函數(shù)y=ax2+bx+c(b>0)與一次函數(shù)y=ax+c的大致圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EFBCAB、ACEF.試回答:

(1)圖中等腰三角形是 .猜想:EFBE、CF之間的關系是 .理由:

(2)如圖②,若ABAC,圖中等腰三角形是 .在第(1)問中EFBE、CF間的關系還存在嗎?

(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OEBCABE,交ACF.這時圖中還有等腰三角形嗎?EFBE、CF關系又如何?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,點D、E分別是邊AB、AC的中點,將△ADE繞點E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( )

A.矩形
B.菱形
C.正方形
D.梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處;

(1)求證:B′E=BF;
(2)設AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關系,并給予證明.

查看答案和解析>>

同步練習冊答案