【題目】如圖,在ABCD中,AE⊥BD,CF⊥BD,垂足分別為E、F.求證:
(1)AE=CF;
(2)四邊形AECF是平行四邊形.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD=BC,AD∥BC,

∴∠ADE=∠CBF,

∵AE⊥BD,CF⊥BD,

∴∠AED=∠CFB=90°,

在△ADE和△CBF中, ,

∴△ADE≌△CBF(AAS),

∴AE=CF


(2)證明:∵AE⊥BD,CF⊥BD,

∴AE∥CF,

由(1)得AE=CF,

∴四邊形AECF是平行四邊形


【解析】(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,AB∥CD,根據(jù)平行線的性質(zhì)得出∠ADE=∠CBF,求出∠AED=∠CFB=90°,根據(jù)AAS推出△ADE≌△CBF即可;(2)證出AE∥CF,即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 下列數(shù)據(jù):75,80,8585,85,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)是( 。

A.75,80B.8585C.80,85D.8075

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年市場上荔枝的價格比去年便宜了5%,去年的價格是每千克m元,則今年的價格是每千克元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,點(diǎn)P為直線BC上的一點(diǎn),DP的垂直平分線交射線DCM,交DPE,交射線ABN.

(1)當(dāng)點(diǎn)MCD邊上時如圖①,易證PM-CP=AN;

(2)當(dāng)點(diǎn)MCD邊延長線上如圖、圖的位置時,上述結(jié)論是否成立?寫出你的猜想,并對圖給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有25名同學(xué)參加某比賽,預(yù)賽成績各不相同,取前13名參加決賽,其中一名同學(xué)已經(jīng)知道自己的成績,能否進(jìn)入決賽,只需要再知道這25名同學(xué)成績的( )

A. 中位數(shù) B. 最高分 C. 方差 D. 平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠α=39°21′,則∠α的余角為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上任意一點(diǎn)(點(diǎn)C與點(diǎn)A,B不重合),分別以AC,BC為邊在直線AB的同側(cè)作等邊三角形ACD和等邊三角形BCE,AE與CD相交于點(diǎn)M,BD與CE相交于點(diǎn)N.連接MN.

試說明:(1)△ACM≌△DCN;(2)MN∥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中,錯誤的是( )

①m是無理數(shù);②m是方程m2 -12=0的解;③m滿足不等式組,④m是12的算術(shù)平方根.

A. ①② B. ①③ C. D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為( 。

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

同步練習(xí)冊答案