【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時(shí)不能擋光. 如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時(shí)陽(yáng)光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請(qǐng)問新建樓房最高_____________. (結(jié)果精確到1.,)

【答案】24

【解析】

過點(diǎn)CCEBD與點(diǎn)E,可得四邊形CABE是矩形,CE=AB=40,AC=BE=1.在Rt△CDEDE=tan30°CE求出DE的長(zhǎng)DB=DE+EB可得答案

如圖,過點(diǎn)CCEBD與點(diǎn)E

Rt△CDE,∠DCE=30°,CE=AB=40,DE=tan30°CE40≈23,EB=AC=1,∴BD=DE+EB=231=24(米)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,邊上一點(diǎn)(不含端點(diǎn) ,),的外角 的平分線上一點(diǎn),且

1)尺規(guī)作圖:在直線的下方,過點(diǎn),作的延長(zhǎng)線,與相交于點(diǎn).

2)求證:是等邊

3)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過兩點(diǎn),與軸交于另一點(diǎn)

求此拋物線的解析式;

已知點(diǎn)在第四象限的拋物線上,求點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo).

的條件下,連接,問在軸上是否存在點(diǎn),使?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等腰直角三角形,其中∠C90°ACBC. DBC上任意一點(diǎn)(點(diǎn)D與點(diǎn)B,C都不重合),連接AD,CFAD,交AD于點(diǎn)E,交AB于點(diǎn)FBGBCCF的延長(zhǎng)線于點(diǎn)G

1)依題意補(bǔ)全圖形,并寫出與BG相等的線段.

2)當(dāng)點(diǎn)D為線段BC中點(diǎn)時(shí),連接DF .求證:∠BDF=∠CDE

3)當(dāng)點(diǎn)C和點(diǎn)F關(guān)于直線AD成軸對(duì)稱時(shí),直接寫出線段CE,DE,AD三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與坐標(biāo)軸交點(diǎn)的坐標(biāo)分別為,

求此函數(shù)的解析式;

求拋物線的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo);

根據(jù)圖象直接寫出時(shí)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)你的經(jīng)驗(yàn),下列事件發(fā)生的可能性哪個(gè)大哪個(gè)?根據(jù)你的想法,把這些事件的序號(hào)按發(fā)生的可能性從小到大的順序排列________

從裝有個(gè)紅球和個(gè)黃球的袋子中摸出的個(gè)球恰好是紅球;

一副去掉大、小王的撲克牌中,隨意抽取張,抽到的牌是紅桃;

水中撈月;

太陽(yáng)從東方升起;

隨手翻一下日歷,翻到的剛好是周二.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABBC2CDABCD,∠C90°EBC的中點(diǎn),AEBD相交于點(diǎn)F,連接DE.

(1)求證:ABE≌△BCD;

(2)判斷線段AEBD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;

(3)CD1,試求AED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,四個(gè)內(nèi)角平分線相交于E、FG、H。求證:四邊形EFGH是矩形。

查看答案和解析>>

同步練習(xí)冊(cè)答案