已知:如圖,P是正方形ABCD內(nèi)一點,∠APB=135°,BP=1,AP=
7
.求PC的長.
分析:把△PBC繞點B逆時針旋轉(zhuǎn)90°得到△ABP′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出PP′,然后求出∠APP′=90°,再利用勾股定理列式計算求出P′A,從而得解.
解答:解:如圖,把△PBC繞點B逆時針旋轉(zhuǎn)90°得到△ABP′(點C的對應(yīng)點C′與點A重合),
所以,AP′=PC,BP′=BP=1,
所以,△PBP′是等腰直角三角形,
所以,∠P′PB=45°,PP′=
BP2+BP′2
=
12+12
=
2
,
∵∠APB=135°,
∴∠APP′=∠APB-∠P′PB=135°-45°=90°,
在Rt△APP′中,AP′=
PP′2+AP2
=
2
2
+
7
2
=3,
∴PC=AP′=3.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理的應(yīng)用,正方形的性質(zhì),作出輔助線構(gòu)造出直角三角形是解題的關(guān)鍵,也是本題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A(0,6),D(精英家教網(wǎng)4,6),且AB=2
10

(1)求點B的坐標(biāo);
(2)求經(jīng)過A、B、D三點的拋物線的解析式;
(3)點C是不是也在(2)中的拋物線上,若在請證明,若不在請說明理由;
(4)在(2)中所求的拋物線上是否存在一點P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請求出該點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,精英家教網(wǎng)將△AOC沿直線AC折疊,點O落在平面內(nèi)的點E處,直線AE交x軸于點D.
(1)求直線AD解析式;
(2)動點P以每秒1個單位的速度,從點B出發(fā)沿著x軸正方向勻速運動,點Q是射線CE上的點,且∠PAQ=∠BAC,設(shè)P運動時間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點F,使以點F、A、D、P為頂點的四邊形是平行四邊形?若存在,求出t值及Q點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,一次函數(shù)y=
1
2
x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0)
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得△PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.
(4)若動點P在x軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別交于點A、B.
(1)求A、B兩點的坐標(biāo);
(2)半徑為0.75的⊙O1,以0.4個單位/秒的速度從原點向x軸正方向運動,問在什么時刻與直線l相切;
(3)在第(2)題的條件下,在⊙O1運動的同時,與之大小相同的⊙O2從點B出發(fā),沿BA方向運動,兩圓經(jīng)過的區(qū)域重疊部分是什么形狀的圖形?并求出其面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市黃州區(qū)路口中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知:如圖,一次函數(shù)y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0)
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得△PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.
(4)若動點P在x軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案