【題目】某市舉行“非常時期,非常的愛”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表.
請根據(jù)以上信息,解決下列問題:
(1)征文比賽成績頻數(shù)分布表中的值是_______,的值是_______;
(2)補全征文比賽成績頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數(shù).
【答案】(1)52,0.2;(2)見詳解;(3)300
【解析】
(1)先求出抽取樣本的總數(shù),總數(shù)減去其他各組的人數(shù)得到a+b,再求出c的值即可;
(2)根據(jù)頻率求出a、b的值,然后補全條形統(tǒng)計圖即可;
(3)總數(shù)乘以所占的頻率,即可得到答案;
解:(1)10÷0.1=100,a+b=100-(38+10)=52,
c=1-0.38-0.32-0.1=0.2,
故答案為:52,0.2;
(2)a=100×0.32=32,b=100×0.2=20,
補全征文比賽成績頻數(shù)分布直方圖如下
(3)1000×(0.2+0.1)=300(篇),
答:全市獲得一等獎征文的篇數(shù)為300篇.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線(x<0)經過平行四邊形ABCO的對角線交點D,已知邊OC在y軸上,且AC⊥AB于點C,則平行四邊形ABCO的面積是( 。
A. B. C. 3 D. 6
【答案】A
【解析】試題分析:∵點D為平行四邊形ABCO的對角線交點,雙曲線y=(x<0)經過點D,AC⊥y軸,
∴S平行四邊形ABCO=4S△COD=4××||=.
故選A.
點睛:本題考查了反比例函數(shù)系數(shù)k的幾何意義以及平行四邊形的性質,根據(jù)平行四邊形的性質結合反比例函數(shù)系數(shù)k的幾何意義,找出S平行四邊形ABCO=4S△COD=2|k|是解題的關鍵.
【題型】單選題
【結束】
9
【題目】如果分式在實數(shù)范圍內有意義,則的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了保護環(huán)境,某集團決定購買、兩種型號的污水處理設備共10臺,其中每臺價格及月處理污水量如下表:
價格(萬元/元) | 15 | 12 |
處理污水量(噸/月) | 250 | 220 |
經預算,該集團準備購買設備的資金不高于130萬元.
(1)請你設計該企業(yè)有哪幾種購買方案?
(2)試通過計算,說明哪種方案處理污水多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AB的中點,點D在線段CB上.
(1)圖中共有 條線段.
(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請你再寫出兩個有關線段的和與差的關系式:
① ;② .
(3)若AB=8,DB=1.5,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
二次根式的除法,要化去分母中的根號,需將分子、分母同乘以一個恰當?shù)亩胃剑?/span>
例如:化簡.
解:將分子、分母同乘以得:.
類比應用:
(1)化簡: ;
(2)化簡: .
拓展延伸:
寬與長的比是的矩形叫黃金矩形.如圖①,已知黃金矩形ABCD的寬AB=1.
(1)黃金矩形ABCD的長BC= ;
(2)如圖②,將圖①中的黃金矩形裁剪掉一個以AB為邊的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否為黃金矩形,并證明你的結論;
(3)在圖②中,連結AE,則點D到線段AE的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由,將過程補充完整:
如圖,,.求證:.
證明:∵(已知),
∴___________(______________________________).
∵(已知),
∴_________(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).
∴__________=(_________________________________)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com