【題目】如圖,在ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.

(1)求證:AE=CF;

(2)求證:AE∥CF.

【答案】(1)證明見解析(2)證明見解析

【解析】

試題(1)根據(jù)平行四邊形性質得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根據(jù)全等三角形的判定推出△DAE≌△BCF,即可得

(2)由△DAE≌△BCF,得出∠DEA=∠BFC,從而得∠AEF=∠DFC,繼而得AE∥CF.

試題解析:(1)∵四邊形ABCD是平行四邊形,

∴AB=DC,AD=BC,AB∥CD,AD∥BC,

∴∠ABF=∠CDE,∠ADE=∠CBF,

在△DAE和△BCF中,,

∴△DAE≌△BCF(ASA),∴AE=CF;

(2)∵△DAE≌△BCF,∴∠DEA=∠BFC,∴∠AEF=∠DFC,∴AE∥CF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,1)B(1,1),C(1,﹣2),D(1,﹣2).把一條長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按ABCDA的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,點DAB上一點,以BD為直徑的⊙OAC相切于點P

(1)求證:BP平分∠ABC;

(2)若PC=1,AP=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,描述了林老師某日傍晚的一段生活過程:他晚飯后,從家里散步走到超市,在超市停留了一會兒,馬上又去書店,看了一會兒書,然后快步走回家,圖象中的平面直角坐標系中x表示時間,y表示林老師離家的距離,請你認真研讀這個圖象,根據(jù)圖象提供的信息,以下說法錯誤的是( )

A. 林老師家距超市1.5千米

B. 林老師在書店停留了30分鐘

C. 林老師從家里到超市的平均速度與從超市到書店的平均速度是相等的

D. 林老師從書店到家的平均速度是10千米/時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C、D為圓O的四等分點,動點P從圓心O出發(fā),沿OCDO的路線做勻速運動,當點P運動到圓心O時立即停止.設運動時間為s),APB的度數(shù)為y度,則下列圖象中表示y() t(s)之間的函數(shù)關系最恰當?shù)氖?/span> ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解我市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題:

(1)在表中:m= ,n= ;

(2)補全頻數(shù)分布直方圖;

(3)小明的成績是所有被抽查學生成績的中位數(shù),據(jù)此推斷他的成績在 組;

(4)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學生的概率是多少?并列表或畫樹狀圖說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

小明遇到這樣一個問題:已知:在ABC中,AB,BC,AC三邊的長分別為、、,求ABC的面積.

小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出ABC的面積他把這種解決問題的方法稱為構圖法.

請回答:

(1)①圖1ABC的面積為________;

②圖1中過O點畫一條線段MN,使MN=2AB,且M、N在格點上.

(2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).利用構圖法在圖2中畫出三邊長分別為、2、的格點DEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的小圓與半徑為2的大圓,有一個公共點與數(shù)軸上的原點重合,兩圓在數(shù)軸上做無滑動的滾動,小圓的運動速度為每秒π個單位,大圓的運動速度為每秒個單位,(1)若小圓不動,大圓沿數(shù)軸來回滾動,規(guī)定大圓向右滾動的時間記為正數(shù),向左滾動時間即為負數(shù),依次滾動的情況錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3,+6

(1)第    次滾動后,大圓與數(shù)軸的公共點到原點的距離最遠;

(2)當大圓結束運動時,大圓運動的路程共有多少?此時兩圓與數(shù)軸重合的點之間的距離是多少?(結果保留π

3)若兩圓同時在數(shù)軸上各自沿著某一方向連續(xù)滾動,滾動一段時間后兩圓與數(shù)軸重合的點之間相距,求此時兩圓與數(shù)軸重合的點所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于有理數(shù),定義一種新運算,請仔細觀察下列各式中的運算規(guī)律:12==2,

,

回答下列問題:

(1)計算:=_____;=_____.

(2)a≠b,則_____(填入

(3)若有理數(shù)a,b的取值范圍在數(shù)軸上的對應點如圖所示,且,求的值.

查看答案和解析>>

同步練習冊答案