【題目】如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AC相切于點P.
(1)求證:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的長.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.
試題解析:
(1)連接OP,
∵AC是⊙O的切線,
∴OP⊥AC,
∴∠APO=∠ACB=90°,
∴OP∥BC,
∴∠OPB=∠PBC,
∵OP=OB,
∴∠OPB=∠OBP,
∴∠PBC=∠OBP,
∴BP平分∠ABC;
(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,
又∵∠PBC=∠OBP,PB=PB,
∴△PBC≌△PBH ,
∴PC=PH=1,BC=BH,
在Rt△APH中,AH=,
在Rt△ACB中,AC2+BC2=AB2
∴(AP+PC)2+BC2=(AH+HB)2,
即42+BC2=(+BC)2,
解得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,對角線 BD 的垂直平分線 MN 與 AD 相交于點 M ,與 BD 相交于點 N ,連接 BM 、 DN .
(1)求證: BN DM ;
(2)若 AB 4 , AD 8,求 MD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數(shù)y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是( 。
A. 5≤k≤20 B. 8≤k≤20 C. 5≤k≤8 D. 9≤k≤20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價180元,T恤每件定價60元,廠家在開展促銷活動期間,向顧客提供了兩種優(yōu)惠方案:①買一件夾克送一件T恤;②夾克和T恤都按定價的80%付款;現(xiàn)在某客戶要到該廠購買夾克30件,T恤件(>).
(1)若該客戶按方案①購買付款 元(用含的式子表示);若該客戶按方案②購買付款 元(用含的式子表示).
(2)當(dāng)時,通過計算說明方案①、方案②哪種方案購買較為合算?
(3)當(dāng)時,你能給出更為省錢的購買方案嗎?試寫出你的購買方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列的解題過程,然后回答下列問題.
例:解絕對值方程:.
解:討論:①當(dāng)時,原方程可化為,它的解是;
②當(dāng)時,原方程可化為,它的解是.
原方程的解為或.
(1)依例題的解法,方程算的解是_______;
(2)嘗試解絕對值方程:;
(3)在理解絕對值方程解法的基礎(chǔ)上,解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是某汽車行駛的路程與時間(分鐘)的函數(shù)關(guān)系圖.
觀察圖中所提供的信息,解答下列問題:
(1)汽車在前分鐘內(nèi)的平均速度是 .
(2)汽車在中途停了多長時間?
(3)當(dāng)時,求與的函數(shù)關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F為對角線BD上的兩點,且∠DAE=∠BCF.
(1)求證:AE=CF;
(2)求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
﹣2,4,﹣8,16,﹣32,64 …①
0,6,﹣6,18,﹣30,66…②
﹣1,2,﹣4,8,﹣16,32…③
(1)第①、②、③行第n個數(shù)分別為 ; ; .
(2)取每行數(shù)的第九個數(shù),計算這三個數(shù)的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com