如圖,已知:△ABC中,CD⊥AB于D,AC=4,BC=3,BD=
9
5

(1)求CD的長;
(2)求AD的長;
(3)求AB的長;
(4)求證:△ABC是直角三角形.
(1)∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵BC=3,BD=
9
5
,
∴由勾股定理得:CD=
BC2-BD2
=
32-(
9
5
)
2
=
12
5


(2)在Rt△ADC中,由勾股定理得:AD=
AC2-CD2
=
42-(
12
5
)2
=
13
5


(3)在Rt△ACB中,AB=AD+BD=
13
5
+
12
5
=5.

(4)證明:∵AC=4,BC=3,AB=5,
∴AC2+BC2=AB2,
∴∠ACB=90°,
即△ACB是直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,它可以看作是邊長為a,b,c的兩直角三角形成,其中A,B,C三點(diǎn)在同直線上,請從面積出發(fā),寫出一個a,b,c的等式;(要過程)
(2)請用四個同樣的直角三角形拼出另一個圖形驗(yàn)證的等式,并寫出驗(yàn)證過程.
(3)如果a+b=8,ab=14,求出c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2,則該半圓的半徑為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=3,AB=5,則AD的長為( 。
A.
9
5
B.5C.
16
5
D.
5
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,則正方形A的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下面幾組勾股數(shù),并尋找規(guī)律:
①3,4,5;
②5,12,13;
③7,24,25;
請你寫出以上規(guī)律的第④組勾股數(shù):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,∠C=90°,AB=5,BC=4,點(diǎn)P是邊BC上的動點(diǎn),則AP長不可能是(  )
A.2.5B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,市政府準(zhǔn)備修建一座高AB為6米的過街天橋,已知地面BC為8米,則橋的坡面AC的長度是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊與對角線BD重合,折痕為DG,則AG的長為( 。
A.1B.
4
3
C.
3
2
D.2

查看答案和解析>>

同步練習(xí)冊答案