【題目】如圖,AB∥CD,點(diǎn)G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).

【答案】70°

【解析】試題分析:先根據(jù)平行線的性質(zhì)可得∠EFD=40°,利用鄰補(bǔ)角的定義計算出

EFC=140°,再利用角平分線的定義計算出∠CFG=70°,再根據(jù)平行線的性質(zhì)求得∠FGE=CFG=70°.

試題解析:∵ABCD,∴∠EFD=1=40°,

∴∠EFC=180°﹣EFD=180°﹣40°=140°,

FG平分∠EFC,

∴∠CFG= EFC=70°,

∴∠FGE=CFG=70°.

點(diǎn)睛:本題主要考查了平行線的性質(zhì),鄰補(bǔ)角的定義和角平分線的定義,解決本題的關(guān)鍵是要熟練掌握圖形的性質(zhì),并能夠靈活運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016浙江省舟山市第9題)如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是(

A. B. C.1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x24x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是方程2x2+3x﹣6=0的一個根,則代數(shù)式3a(2a+1)﹣(2a+1)(2a﹣1)的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2,畫出一個角,使它等于3∠1-∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西省第23題)綜合與探究

如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).

(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);

(2)試探究拋物線上是否存在點(diǎn)F,使,若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;

(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q.試探究:當(dāng)m為何值時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·河北模擬)3個籃球隊進(jìn)行單循環(huán)比賽,總的比賽場次是多少?4個球隊呢?5個球隊呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某碼頭上有20名工人裝載一批貨物,已知每人往一艘輪船上裝載2噸貨物,裝載完畢恰好用了6天,輪船到達(dá)目的地后,另一批工人開始卸貨,計劃平均每天卸貨v噸,剛要卸貨時遇到緊急情況,要求船上的貨物卸載完畢不超過4天,則這批工人實(shí)際每天至少應(yīng)卸貨( 。
A.30噸
B.40噸
C.50噸
D.60噸

查看答案和解析>>

同步練習(xí)冊答案