【題目】如圖,中,分別在邊上,,則線段的長(zhǎng)為______

【答案】

【解析】

如下圖,構(gòu)造△ABC的外接圓,利用圓周角與圓心角的關(guān)系,求得∠AHF=30°,從而得到△AGH與△AGF是含有30°的直角三角形,進(jìn)而得到三角形各邊長(zhǎng);然后證△AHE≌△ADE,在△AEH中利用余弦定理可求得AE長(zhǎng)

如下圖,作△ABC的外接圓,圓心為點(diǎn)O,過(guò)點(diǎn)EAB的垂線,交AB于點(diǎn)F,交于點(diǎn)G,反向延長(zhǎng)EF于點(diǎn)H,連接AG、BGAH

∵∠ABE=BAE,EFAB,

AF=BF=,點(diǎn)OAB的垂直平分線上,即點(diǎn)OGH

GH的直徑,點(diǎn)G的中點(diǎn)

∴∠HAG=90°

∵∠C=60°

∴∠AHG=30°

∴∠AGH=60°

RtAGF中,∵AF=

GF=1,AG=2

∴在RtAGH中,GH=4,AH=

AH=AD

設(shè)∠ABD=ADB=x

根據(jù)AB=AD和∠ABE=BAE可推導(dǎo)得:

BAD=180-2x,∠DAE=x-60,∠AEB=2x-60,∠ABE=BAE=120-x,∠EBC=2x-120

∴∠HAE=HAG-∠GAF-BAD-∠DAE=x-60

∴∠HAE=DAE

在△AHE與△ADE

∴△AHE≌△ADE

EH=ED=1

∵EH=1,GF=1,HG=4,∴FE=2

∵AF=

∴在Rt△AEF中,AE=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是矩形的對(duì)角線分別是上的動(dòng)點(diǎn),的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方方駕駛小汽車(chē)勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車(chē)的行使時(shí)間為t(單位:小時(shí)),行使速度為v(單位:千米/小時(shí)),且全程速度限定為不超過(guò)120千米/小時(shí).

⑴求v關(guān)于t的函數(shù)表達(dá)式;

⑵方方上午8點(diǎn)駕駛小汽車(chē)從A出發(fā).

①方方需在當(dāng)天12點(diǎn)48分至14點(diǎn)(含12點(diǎn)48分和14點(diǎn))間到達(dá)B地,求小汽車(chē)行駛速度v的范圍.

②方方能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OA1B1,△B1A2B2是等邊三角形,點(diǎn)A1A2在函數(shù)的圖象上,點(diǎn)B1B2x軸的正半軸上,分別求△OA1B1,△B1A2B2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù),的圖象和性質(zhì)進(jìn)行了探究過(guò)程如下,請(qǐng)補(bǔ)充完成:

1)函數(shù)的自變量的取值范圍是__________________;

2)下表是的幾組對(duì)應(yīng)值.請(qǐng)直接寫(xiě)出的值:______________;________

0

2

3

4

-3

5

3

3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

4)通過(guò)觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對(duì)稱(chēng)圖形,且點(diǎn)是一組對(duì)稱(chēng)點(diǎn),則其對(duì)稱(chēng)中心的坐標(biāo)為________

5)請(qǐng)寫(xiě)出一條該函數(shù)的性質(zhì):___________________

6)當(dāng)時(shí),關(guān)于的方程有實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)原點(diǎn),交軸正半軸于點(diǎn),頂點(diǎn)為,對(duì)稱(chēng)軸交軸于點(diǎn)

1)如圖1,求點(diǎn)的坐標(biāo);

2)如圖2,點(diǎn)為拋物線在第一象限上一點(diǎn),連接交對(duì)稱(chēng)軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為的長(zhǎng)為,求之間的函數(shù)解析式,不要求寫(xiě)出自變量的取值范圍;

3)如圖3,在(2)的條件下,點(diǎn)上一點(diǎn),連接,點(diǎn)上一點(diǎn),連接,,若,求點(diǎn)橫坐標(biāo)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax22ax3a圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)M的縱坐標(biāo)為4,直線MDx軸于點(diǎn)D

1)求拋物線的解析式;

2)如圖1N為線段MD上一個(gè)動(dòng)點(diǎn),以N為等腰三角形頂角頂點(diǎn),NA為腰構(gòu)造等腰NAG,且G點(diǎn)落在直線CM上.若在直線CM上滿足條件的G點(diǎn)有且只有一個(gè)時(shí),請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).

3)如圖,點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),點(diǎn)Q為第四象限內(nèi)拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,連接PC、AQ.當(dāng)PCAQ時(shí),求SPCQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形.

1)用直尺和圓規(guī)作出對(duì)角線AC的垂直平分線,分別交AD,BCEF;(保留作圖痕跡,不寫(xiě)作法)

2)在(1)作出的圖形中,連接CEAF,若AB4,BC8,且ABAC,求四邊形AECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB=90°.AC=8,BC=3,點(diǎn)DBC邊上動(dòng)點(diǎn),連接AD交以CD為直徑的圓于點(diǎn)E,則線段BE長(zhǎng)度的最小值為( )

A.1B.C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案