(2010•大連)如圖1,∠ACB=90°,CD⊥AB,垂足為D,點E在AC上,BE交CD于點G,EF⊥BE交AB于點F,若AC=mBC,CE=kEA,探索線段EF與EG的數(shù)量關(guān)系,并證明你的結(jié)論.

說明:如果你反復探索沒有解決問題,可以選。1)或(2)中的條件,選(1)中的條件完成解答滿分為7分;選(2)中的條件完成解答滿分為5分.
(1)m=1(如圖2)
(2)m=1,k=1(如圖3)

【答案】分析:過點E作EM⊥AB,EN⊥CD,根據(jù)CD⊥AB和EF⊥BE先證明△EFM與△EGN相似,得到EF:EG=EM:EN,再根據(jù)平行線分線段成比例定理求出EM:CG=AE:AC,EN:AD=CE:AC,結(jié)合CE=kEA即可用CD、AD表示出EM與EN,再利用∠A的正切值即可求出.
解答:解:過E作EM⊥AB,EN⊥CD,
∵CD⊥AB,∴EM∥CD,EN∥AB,
∵EF⊥BE,∴∠EFM+∠EBF=90°,
∵∠EBF+∠DGB=90°,∠DGB=∠EGN(對頂角相等)
∴∠EFM=∠EGN,
∴△EFM∽△EGN,

在△ADC中,
∵EM∥CD,
,
又CE=kEA,
∴AC=(k+1)AE
∴CD=(k+1)EM,
同理,
∴AD=EN,
∵∠ACB=90°,CD⊥AB,AC=mBC
tanA==,
=,

∴EF=EG.
點評:本題難度較大,主要利用相似三角形對應邊成比例求解,正確作出輔助線是解本題的關(guān)鍵,這就要求同學們在平時的學習中不斷積累經(jīng)驗,開拓視野.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•大連)如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點C,直線L1經(jīng)過點C且平行于x軸,將L1向上平移t個單位得到直線L2,設L1與拋物線F的交點為C、D,L2與拋物線F的交點為A、B,連接AC、BC.
(1)當,,c=1,t=2時,探究△ABC的形狀,并說明理由;
(2)若△ABC為直角三角形,求t的值(用含a的式子表示);
(3)在(2)的條件下,若點A關(guān)于y軸的對稱點A’恰好在拋物線F的對稱軸上,連接A’C,BD,求四邊形A’CDB的面積(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•大連)如圖,直線1:與x軸、y軸分別相交于點A、B,△AOB與△ACB關(guān)于直線l對稱,則點C的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省大連市中考數(shù)學試卷(解析版) 題型:解答題

(2010•大連)如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點C,直線L1經(jīng)過點C且平行于x軸,將L1向上平移t個單位得到直線L2,設L1與拋物線F的交點為C、D,L2與拋物線F的交點為A、B,連接AC、BC.
(1)當,,c=1,t=2時,探究△ABC的形狀,并說明理由;
(2)若△ABC為直角三角形,求t的值(用含a的式子表示);
(3)在(2)的條件下,若點A關(guān)于y軸的對稱點A’恰好在拋物線F的對稱軸上,連接A’C,BD,求四邊形A’CDB的面積(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省大連市中考數(shù)學試卷(解析版) 題型:填空題

(2010•大連)如圖,直線1:與x軸、y軸分別相交于點A、B,△AOB與△ACB關(guān)于直線l對稱,則點C的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2010•大連)如圖,正方形ABCD的邊長為2,E、F、G、H分別為各邊中點,EG、FH相交于點O,以O為圓心,OE為半徑畫圓,則圖中陰影部分的面積為   

查看答案和解析>>

同步練習冊答案