【題目】如圖,在反比例函數(shù)y= 的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內(nèi)有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y= 的圖象上運動,若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
【答案】B
【解析】
連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F,通過同角的余角相等得出∠AOE=∠COF,結(jié)合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根據(jù)相似三角形的性質(zhì)得出比例式,再由tan∠CAB=2,可得出CFOF的值,進而得到k的值.
解:如圖,連接OC,過點A作AE⊥y軸于點E,過點C作CF⊥y軸于點F,
∵直線AB過點O,點A、B在反比例函數(shù)y=的圖像上,
∴點A、B點關(guān)于O點對稱,
∴AO=BO.
又∵AC=BC,
∴CO⊥AB.
∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,
∴∠AOE=∠COF,
又∵∠AEO=90°,∠CFO=90°,
∴△AOE∽△COF,
∴==,
∵tan∠CAB==2,
∴===,
∴CF=2AE,OF=2OE.
又∵AEOE=,
∴CFOF=|k|=4 AEOE=6,
∴k=±6.
∵點C在第二象限,
∴k=-6,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側(cè),點B的坐標為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?如存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,BD平分∠ABC交AC于點D,過D作DE∥BC交AB于點E,若DE剛好平分∠ADB,且AE=a,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習了矩形這節(jié)內(nèi)容之后,明明同學發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點 P 為 AB 邊上的定點,且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動點 E,當的值是多少時,△PDE 的周長最?
(3)如圖(3),點 Q 是邊 AB 上的定點,且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長交 AB 的延長線于點 F,連接 CF,G 為 CF 的中點,M、N 分別為線段 QF 和 CD 上的動點,且始終保持 QM=CN,MN 與 DF 相交于點 H,請問 GH 的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八(2)班分成甲、乙兩組進行一分鐘投籃測試,并規(guī)定得6分及以上為合格,得9分及以上為優(yōu)秀,現(xiàn)兩組學生的一次測試成績統(tǒng)計如下表:
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人數(shù)(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人數(shù)(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據(jù)上表數(shù)據(jù),把下面的統(tǒng)計表補充完整,并寫出求甲組平均分的過程;
統(tǒng)計量 | 平均分 | 方差 | 眾數(shù) | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 |
| 2.56 |
| 6 | 80.0% | 26.7% |
乙組 | 6.8 | 1.76 | 7 |
| 86.7% | 13.3% |
(2)如果從投籃的穩(wěn)定性角度進行評價,你認為哪組成績更好?并說明理由;
(3)小聰認為甲組成績好于乙組,請你說出支持小聰觀點的理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com