【題目】如圖1,長度為6千米的國道兩側有,兩個城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點為和,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經濟,方便兩個城鎮(zhèn)的物資輸送,現(xiàn)需要在國道上修建一個物流基地,設、之間的距離為千米,物流基地沿公路到、兩個城鎮(zhèn)的距離之和為干米,以下是對函數(shù)隨自變量的變化規(guī)律進行的探究,請補充完整.
(1)通過取點、畫圖、測量,得到與的幾組值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如圖2,建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象.
(3)結合畫出的函數(shù)圖象,解決問題:
①若要使物流基地沿公路到、兩個城鎮(zhèn)的距離之和最小,則物流基地應該修建在何處?(寫出所有滿足條件的位置)
答:__________.
②如右圖,有四個城鎮(zhèn)、、、分別位于國道兩側,從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國道上修建一個物流基地,使得沿公路到、、、的距離之和最小,則物流基地應該修建在何處?(寫出所有滿足條件的位置)
答:__________.
【答案】(1)6.5,8.5;(2)見解析;(3)①之間,②點處
【解析】
(1)由題意分x=2以及x=4兩種情況分析討論,并將相關線段的長代入即可得答案;
(2)根據(jù)表格數(shù)據(jù)先描點再連接畫出函數(shù)圖象即可;
(3)①由圖形可知,若物流基地修建在C、D兩點之外,則距離會大于NC+CD+DM,從而可得答案;
②結合①的結論及修建在上時,到、兩個城鎮(zhèn)的距離之和最小綜合分析可得答案.
解:(1)當時,點在點處,
此時;
當時,點在點靠近側1處,
此時.
(2)描點,畫圖如下:
(3)①由函數(shù)圖象可得,當物流基地在之間時,沿公路到、兩個城鎮(zhèn)的距離之和最小.
②當修建在上時,到、兩個城鎮(zhèn)的距離之和最;
當修建在上時,到、兩個城鎮(zhèn)的距離之和最小;
綜上,修建在點處,則到、、、的距離之和最小.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,∠CBD=30°,則圖中陰影部分的面積;
(3)過點B作⊙O的切線交CD的延長線于點E若BC=12,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有3個分別寫有數(shù)字﹣2,0,1的小球,它們除了數(shù)字不同以外其余完全相同,先從盒子里隨機抽取1個小球,再從剩下的小球中抽取1個,將這兩個小球上的數(shù)字依次記為a,b,則滿足關于x的方程x2+ax+b=0有實數(shù)根的概率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為 ;
(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關系如圖1所示.
小清同學根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)
B.駱駝從0時到時刻之間的最高體溫與當日最低體溫的差
C.駱駝在時刻的體溫與當日平均體溫的絕對差
D.駱駝從0時到時刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進行折疊,具體操作過程如下:
第一步:如圖,先把正方形ABCD對折,折痕為MN;
第二步:點E在線段MD上,將△ECD沿EC翻折,點D恰好落在MN上,記為點P,連接BP可得△BCP是等邊三角形
問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動點(與點C,B不重合),連接AP,延長BC至點Q,使得∠PAC=∠QAC,過點Q作射線QH交線段AP于H,交AB于點M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大。ㄓ煤α的式子表示);
(2)用等式表示線段QC和BM之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,延長至點,使得過點作,交線段于點.設
(1)連結,請求出的度數(shù)和的半徑(用的代數(shù)式表示). (直接寫出答案)
(2)證明:點是的中點.
(3)如圖2,延長至點,使得, 連結,交于點
①連結,當與四邊形其它三邊中的一邊相等時,請求出所有滿足條件的的值.
②當點關于直線對稱點恰好落在上,連結.記和的面積分別為,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某乒乓球館使用發(fā)球機進行輔助訓練,出球口在桌面中線端點A處的正上方,假設每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上,在乒乓球運行時,設乒乓球與端點A的水平距離為x(米),與桌面的高度為y(米),經多次測試后,得到如下部分數(shù)據(jù):
x/米 | 0 | 0.2 | 0.4 | 0.6 | 1 | 1.4 | 1.6 | 1.8 | … |
y/米 | 0.24 | 0.33 | 0.4 | 0.45 | 0.49 | 0.45 | 0.4 | 0.33 | … |
(1)由表中的數(shù)據(jù)及函數(shù)學習經驗,求出y關于x的函數(shù)解析式;
(2)試求出當乒乓球落在桌面時,其落點與端點A的水平距離是多少米?
(3)當乒乓球落在桌面上彈起后,y與x之間滿足.
①用含a的代數(shù)式表示k;
②已知球網(wǎng)高度為0.14米,球桌長(1.4×2)米.若a=-0.5,那么乒乓球彈起后,是否有機會在某個擊球點可以將球沿直線扣殺到端點A?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com