【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,∠CBD=30°,則圖中陰影部分的面積;
(3)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E若BC=12,tan∠CDA=,求BE的長(zhǎng).
【答案】(1)證明見解析; (2)-;(3)5
【解析】
試題分析:(1)連接OD、OE,根據(jù)∠ADO+∠DBA=90°以及∠∠CDA=∠CBD得出∠ODC=90°;(2)陰影部分的面積等于△OCD的面積減去扇形ODA的面積進(jìn)行計(jì)算;(3)將∠CDA轉(zhuǎn)化成∠OEB,然后利用勾股定理進(jìn)行求解.
試題解析:(1)連OD,OE,∵AB為直徑,∴∠ADB=90°,即∠ADO+∠BDO=90°,
又∵∠CDA=∠CBD,而∠CBD=∠BDO,∴∠BDO=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,
∴CD是⊙O的切線;
(2)∵OD=1,∠CBD=30° ∴∠DOC=60° ∴∠C=30° ∴OC=2,CD=
∴△OCD的面積= 扇形ODA的面積= ∴陰影部分的面積=-;
(3)∵EB為⊙O的切線,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,
∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,
∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴,∴CD=×12=8,
在Rt△CBE中,設(shè)BE=x,∴(x+8)=x+12,解得x=5.即BE的長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=4,BC=6,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△CBC1的面積為3,求△ABA1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn).在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,直接寫出線段EP1長(zhǎng)度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=1,對(duì)角線AC,BD相交于點(diǎn)O,∠COD=60°,點(diǎn)E是線段CD上一點(diǎn),連接OE,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線段OF,連接DF.
(1)求證:DF=CE;
(2)連接EF交OD于點(diǎn)P,求DP的最大值;
(3)如圖2,點(diǎn)E在射線CD上運(yùn)動(dòng),連接AF,在點(diǎn)E的運(yùn)動(dòng)過程中,若AF=AB,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))
(1)求拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示);
(2)求線段AB的長(zhǎng);
(3)拋物線與軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)重合),若的面積始終小于的面積,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,是的直徑,點(diǎn)在上,連接,.
(1)求證:平分;
(2)如圖2,連接,點(diǎn)在上,連接,與交于點(diǎn),求證:;
(3)在(2)的條件下,點(diǎn)在上,連接,,,與交于點(diǎn),若,,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)E在射線OA上,點(diǎn)F在射線OB 上,AO⊥BO,EM平分∠AEF,FM平分∠BFE,則tan∠EMF的值為( )
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)甲說:該二次函數(shù)的圖象必定經(jīng)過點(diǎn).乙說:若圖象的頂點(diǎn)在x軸上,則,你覺得他們的結(jié)論對(duì)嗎?請(qǐng)說明理由;
(2)若拋物線經(jīng)過,,求證;
(3)甲問乙:“我取的k是一個(gè)整數(shù),畫出它的圖象后發(fā)現(xiàn)拋物線與x軸的一個(gè)交點(diǎn)在y軸右側(cè),一個(gè)交點(diǎn)在原點(diǎn)和之間,你知道k等于幾嗎?并求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛活動(dòng)中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長(zhǎng)度為6千米的國(guó)道兩側(cè)有,兩個(gè)城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點(diǎn)為和,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟(jì),方便兩個(gè)城鎮(zhèn)的物資輸送,現(xiàn)需要在國(guó)道上修建一個(gè)物流基地,設(shè)、之間的距離為千米,物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和為干米,以下是對(duì)函數(shù)隨自變量的變化規(guī)律進(jìn)行的探究,請(qǐng)補(bǔ)充完整.
(1)通過取點(diǎn)、畫圖、測(cè)量,得到與的幾組值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如圖2,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①若要使物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)
答:__________.
②如右圖,有四個(gè)城鎮(zhèn)、、、分別位于國(guó)道兩側(cè),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國(guó)道上修建一個(gè)物流基地,使得沿公路到、、、的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)
答:__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com