如圖所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD于F,F(xiàn)G∥AB交BC于G.試判斷CE,CF,GB的數(shù)量關(guān)系,并說明理由
解:CE=CF=GB.
理由:(1)∵∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵CD⊥AB,∴∠ACD+∠CAD=90°.
∴∠ACD=∠ABC.
∵AE平分∠BAC,∴∠BAE=∠CAE.
∵∠CEF=∠BAE+∠ABC,
∠CEF=∠CAE+∠ACD,
∴∠CEF=∠CFE,∴CE=CF(等角對等邊).
如圖,過E作EH⊥AB于H.
∵AE平分∠BAC,EH⊥AB,EC⊥AC.
∴EH=EC(角平分線上的點到角兩邊的距離相等).
∴EH=EC,∴EH=CF.
∵FG∥AB,∴∠CGF=∠EBH.
∵CD⊥AB,EH⊥AB,∴∠CFG=∠EHB=90°.
在Rt△CFG和Rt△EHB中,
∠CGF=∠EBH,∠CFG=∠EHB,CF=EH,
∴Rt△CFG≌Rt△EHB.
∴CG=EB,∴CE=GB.
∴CE=CF=GB.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com