【題目】東臺教育局為幫助全市貧困師生舉行“一日捐”活動,甲、乙兩校教師各捐款30000元,已知“……”,設(shè)乙學(xué)校教師有x人,則可得方程,根據(jù)此情景,題中用“……”表示的缺失的條件應(yīng)補(bǔ)( )
A. 乙校教師比甲校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
B. 甲校教師比乙校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
C. 甲校教師比乙校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%
D. 乙校教師比甲校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y=(x<0)的圖象上,AD∥x軸,AB∥y軸,點B在反比例函數(shù)y=(x<0)的圖象上,過點B作BC∥x軸,交y軸于點C,若四邊形ABCD的面積為8,則k的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離,即|x|=|x﹣0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;這個結(jié)論可以推廣為:|x﹣y|表示在數(shù)軸上數(shù)x、y對應(yīng)點之間的距離;在解題中,我們常常運用絕對值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的解為x=±2.
②在方程|x﹣1|=2中,x的值就是數(shù)軸上到1的距離為2的點對應(yīng)的數(shù),顯然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和﹣2的距離之和為5 的點對應(yīng)的x值,在數(shù)軸上1和﹣2的距離為3,滿足方程的x的對應(yīng)點在1的右邊或﹣2的左邊.若x的對應(yīng)點在1的右邊,由圖示可知,x=2;同理,若x的對應(yīng)點在﹣2的左邊,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根據(jù)上面的閱讀材料,解答下列問題:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)畫出圖示,解方程|x﹣3|+|x+2|=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=54°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖菱形ABCD中,∠ADC=60°,M、N分別為線段AB,BC上兩點,且BM=CN,且AN,CM所在直線相交于E.
(1)證明△BCM≌△CAN;
(2)∠AEM= °;
(3)求證DE平分∠AEC;
(4)試猜想AE,CE,DE之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當(dāng)∠CAE等于多少度時△ABC是等邊三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,點P是與圓心C不重合的點,給出如下定義:若點P′為射線CP上一點,滿足CPCP′=r2 , 則稱點P′為點P關(guān)于⊙C的反演點.右圖為點P及其關(guān)于⊙C的反演點P′的示意圖.
(1)如圖1,當(dāng)⊙O的半徑為1時,分別求出點M(1,0),N(0,2),T( , )關(guān)于⊙O的反演點M′,N′,T′的坐標(biāo);
(2)如圖2,已知點A(1,4),B(3,0),以AB為直徑的⊙G與y軸交于點C,D(點C位于點D下方),E為CD的中點.
①若點O,E關(guān)于⊙G的反演點分別為O′,E′,求∠E′O′G的大;
②若點P在⊙G上,且∠BAP=∠OBC,設(shè)直線AP與x軸的交點為Q,點Q關(guān)于⊙G的反演點為Q′,請直接寫出線段GQ′的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD為某中學(xué)課外活動小組圍建的一個生物苗圃園,其中兩邊靠墻(墻足夠長),另外兩邊用長度為16米的籬笆(虛線部分)圍成.設(shè)AB邊的長度為x米,矩形ABCD的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式?(不要求寫自變量的取值范圍);
(2)求矩形ABCD的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com