函數(shù)h=3.5t-4.9t2(t的單位:s,h的單位:m)可以描述小敏跳遠時重心高度的變化,則他起跳后到重心最高時所用的時間約是( 。
A.0.36sB.0.63sC.0.70sD.0.71s

h=3.5t-4.9t2
=-4.9(t-
15
4
2+
5
8

∵-4.9<0
∴當t=
5
14
≈0.36(s)時,h最大.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,平面直角坐標系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,點C是AB的中點,CD⊥AB且CD=AB.直線BE與y軸平行,點F是射線BE上的一個動點,連接AD、AF、DF.
(1)若點F的坐標為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點P是此拋物線上一個動點,點Q在此拋物線的對稱軸上,以點A、F、P、Q為頂點構成的四邊形是平行四邊形,請直接寫出點Q的坐標;
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當∠DAF=45°時,求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=mx2-2mx+n與x軸交于A、B兩點,點A的坐標為(-2,0).
(1)求B點坐標;
(2)直線y=
1
2
x+4m+n
經(jīng)過點B.
①求直線和拋物線的解析式;
②點P在拋物線上,過點P作y軸的垂線l,垂足為D(0,d).將拋物線在直線l上方的部分沿直線l翻折,圖象的其余部分保持不變,得到一個新圖象G.請結合圖象回答:當圖象G與直線y=
1
2
x+4m+n
只有兩個公共點時,d的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(-1,0),點B的坐標為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1

(1)平移拋物線l1,使平移后的拋物線經(jīng)過A、B兩點,記為拋物線l2,求拋物線l2的函數(shù)表達式;
(2)設拋物線l2的頂點為C,請你判斷y軸上是否存在點K,使得∠BKC=90°,若存在,求出K點坐標,若不存在,請說明理由;
(3)拋物線l2與y軸交于點D,點P是線段BD上的一個動點,過點P,作y軸的平行線,交拋物線l2于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象交x軸于點A(x0,0)和點B(2,0),與y軸的正半軸交于點C,其對稱軸是直線x=-1,tan∠BAC=2,點A關于y軸的對稱點為點D.
(1)確定A、C、D三點的坐標;
(2)求過B、C、D三點的拋物線的解析式;
(3)若過點(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點,以MN為一邊,拋物線上任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,寫出S關于P點縱坐標y的函數(shù)解析式;
(4)當
1
2
<x<4時,(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用長度一定的不銹鋼材料設計成外觀為矩形的框架(如圖1,2中的一種).

設豎檔AB=x米,請根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長度均指各圖中所有黑線的長度和,所有橫檔和豎檔分別與AD,AB平行)
(Ⅰ)在圖1中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積為3平方米?
(Ⅱ)在圖2中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c與直線y=x+1有兩個交點A、B.
(1)當AB的中點落在y軸時,求c的取值范圍;
(2)當AB=2
2
,求c的最小值,并寫出c取最小值時拋物線的解析式;
(3)設點P(t,T)在AB之間的一段拋物線上運動,S(t)表示△PAB的面積.
①當AB=2
2
,且拋物線與直線的一個交點在y軸時,求S(t)的最大值,以及此時點P的坐標;
②當AB=m(正常數(shù))時,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時點P的坐標(t,T)滿足的關系,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是( 。
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一位籃球運動員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案