如圖,為測量某物體AB的高度,在D點測得A點的仰角為30°,朝物體AB方向前進(jìn)20米,到達(dá)點C,再次測得點A的仰角為60°,則物體AB的高度為( 。
A.10
3
B.10米C.20
3
D.
20
3
3

∵在直角三角形ADB中,∠D=30°,
AB
BD
=tan30°
∴BD=
AB
tan30°
=
3
AB
∵在直角三角形ABC中,∠ACB=60°,
∴BC=
AB
tan60°
=
3
3
AB
∵CD=20
∴CD=BD-BC=
3
AB-
3
3
AB=20
解得:AB=10
3

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在△ABC中,∠C=90°,D是AC邊上一點,且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中OABC是正方形,點A的坐標(biāo)是(4,0),點C的坐標(biāo)是(0,4),點P為邊AB上一點,∠CPB=60°,沿CP折疊正方形,折疊后,點B落在平面內(nèi)點B′處,則B′點的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在銳角△ABC中,已知BC=6,∠C=60°,sinA=0.8,求AB和AC的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一條河有一段筆直的河岸,從南岸可以望到北岸的電視塔CD,并且在南岸某點處測得點C的仰角為31°,測量者在南岸,工具有皮尺和測角儀(可測水平角和仰、俯角),不過河怎樣測出電視塔的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某住宅小區(qū)為了美化環(huán)境,增加綠地面積,決定在甲樓和乙樓之間的坡地上建一塊斜坡草地為綠化帶,如圖,已知兩樓的水平距離為15米,距離甲樓4米(即AB=4米)開始修建坡角為30°的斜坡,斜坡的頂端距離乙樓2米(即CD=2米),如果綠化帶總長為10米,求綠化帶的面積.(
3
≈1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地鐵站地下通道的手扶電梯示意圖如圖所示.其中AB、CD分別表示地下通道、地上通道電梯口處地面的水平線,∠ABC=145°,BC的長為12m,求乘電梯從點B到點C上升的高度h.【參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小華家的住宅樓AB與北京奧運(yùn)會主體育場鳥巢隔水相望且能看到鳥巢的最高處CD,兩建筑物的底部在同一水平面上,視野開闊,但不能直接到達(dá),小華為了測量鳥巢的最大高度CD,只能利用所在住宅樓的地理位置.現(xiàn)在小華僅有的測量工具是皮尺和測角儀(皮尺可測量長度,測角儀可測量仰角、俯角),請你幫助小華設(shè)計一個測量鳥巢的最大高度的方案.
(1)要求寫出測量步驟和必需的測量數(shù)據(jù)(用字母表示)并畫出測量圖形(測角儀高度忽略不計);
(2)利用小華測量的數(shù)據(jù)(用字母表示),寫出計算鳥巢最大高度CD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,∠A=30°,E為AB上一點且AE:EB=4:1,EF⊥AC于F,連接FB,則tan∠CFB的值等于______.

查看答案和解析>>

同步練習(xí)冊答案