如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A開(kāi)始沿邊AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)B開(kāi)始沿折線BC﹣CD向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)E比動(dòng)點(diǎn)F先出發(fā)1秒,其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)F在邊BC上.
①如圖1,連接DE,AF,若DE⊥AF,求t的值;
②如圖2,連結(jié)EF,DF,當(dāng)t為何值時(shí),△EBF與△DCF相似?
(2)如圖3,若點(diǎn)G是邊AD的中點(diǎn),BG,EF相交于點(diǎn)O,試探究:是否存在在某一時(shí)刻t,使得?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(1) ①t=1;②.(2),.
解析試題分析:(1)①利用正方形的性質(zhì)及條件,得出△ABF≌△DAE,由AE=BF列式計(jì)算.
②利用△EBF∽△DCF,得出,列出方程求解.
(2)①0<t≤2時(shí)如圖3,以點(diǎn)B為原點(diǎn)BC為x軸,BA為y軸建立坐標(biāo)系,先求出EF所在的直線和BG所在的直線函數(shù)關(guān)系式是,再利用勾股定理求出BG,運(yùn)用,求出點(diǎn)O的坐標(biāo)把O的坐標(biāo)代入EF所在的直線函數(shù)關(guān)系式求解.②當(dāng)t>2時(shí)如圖4,以點(diǎn)B為原點(diǎn)BC為x軸,BA為y軸建立坐標(biāo)系,以點(diǎn)B為原點(diǎn)BC為x軸,BA為y軸建立坐標(biāo)系,先求出EF所在的直線和BG所在的直線函數(shù)關(guān)系式是,再利用勾股定理求出BG,運(yùn)用,求出點(diǎn)O的坐標(biāo)把O的坐標(biāo)代入EF所在的直線函數(shù)關(guān)系式求解.
試題解析:(1)①如圖1
∵DE⊥AF,
∴∠AOE=90°,
∴∠BAF+∠AEO=90°,
∵∠ADE+∠AEO=90°,
∴∠BAE=∠ADE,
又∵四邊形ABCD是正方形,
∴AE=AD,∠ABF=∠DAE=90°,
在△ABF和△DAE中,
∴△ABF≌△DAE(ASA)
∴AE=BF,
∴1+t=2t,
解得t=1.
②如圖2
∵△EBF∽△DCF
∴,
∵BF=2t,AE=1+t,
∴FC=4﹣2t,BE=4﹣1﹣t=3﹣t,
∴,
解得:,(舍去),
故.
(2)①0<t≤2時(shí)如圖3,以點(diǎn)B為原點(diǎn)BC為x軸,BA為y軸建立坐標(biāo)系,
A的坐標(biāo)(0,4),G的坐標(biāo)(2,4),F(xiàn)點(diǎn)的坐標(biāo)(2t,0),E的坐標(biāo)(0,3﹣t)
EF所在的直線函數(shù)關(guān)系式是:y=x+3﹣t,
BG所在的直線函數(shù)關(guān)系式是:y=2x,
∵
∵,
∴BO=,OG=,
設(shè)O的坐標(biāo)為(a,b),
解得
∴O的坐標(biāo)為(,)
把O的坐標(biāo)為(,)代入y=x+3﹣t,得
=×+3﹣t,
解得,t=(舍去),t=,
②當(dāng)3≥t>2時(shí)如圖4,以點(diǎn)B為原點(diǎn)BC為x軸,BA為y軸建立坐標(biāo)系,
A的坐標(biāo)(0,4),G的坐標(biāo)(2,4),F(xiàn)點(diǎn)的坐標(biāo)(4,2t﹣4),E的坐標(biāo)(0,3﹣t)
EF所在的直線函數(shù)關(guān)系式是:y=x+3﹣t,
BG所在的直線函數(shù)關(guān)系式是:y=2x,
∵BG==2
∵,
∴BO=,OG=,
設(shè)O的坐標(biāo)為(a,b),
解得
∴O的坐標(biāo)為(,)
把O的坐標(biāo)為(,)代入y=x+3﹣t,得
=×+3﹣t,
解得:t=.
綜上所述,存在t=或t=,使得.
【考點(diǎn)】四邊形綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,直線與軸交于點(diǎn)A(,0),與軸交于點(diǎn)B,且與直線:的交點(diǎn)為C(,4) .
(1)求直線的解析式;
(2)如果以點(diǎn)O,D,B,C為頂點(diǎn)的四邊形是平行四邊 形,直接寫(xiě)出點(diǎn)D的坐標(biāo);
(3)將直線沿y軸向下平移3個(gè)單位長(zhǎng)度得到直線,點(diǎn)P(m,n)為直線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線, 分別與直線,交于M,N.當(dāng)點(diǎn)P在線段MN上時(shí),請(qǐng)直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
黃巖島是我國(guó)南沙群島的一個(gè)小島,漁產(chǎn)豐富.一天某漁船離開(kāi)港口前往該海域捕魚(yú).捕撈一段時(shí)間后,發(fā)現(xiàn)一外國(guó)艦艇進(jìn)入我國(guó)水域向黃巖島駛來(lái),漁船向漁政部門(mén)報(bào)告,并立即返航.漁政船接到報(bào)告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開(kāi)港口的時(shí)間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)
(1)直接寫(xiě)出漁船離港口的距離s和它離開(kāi)港口的時(shí)間t的函數(shù)關(guān)系式.
(2)求漁船和漁政船相遇時(shí),兩船與黃巖島的距離.
(3)在漁政船駛往黃巖島的過(guò)程中,求漁船從港口出發(fā)經(jīng)過(guò)多長(zhǎng)時(shí)間與漁政船相距30海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一次函數(shù)y=kx+b(k≠0)的圖象過(guò)點(diǎn)P(﹣,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點(diǎn)A(﹣2,1)和點(diǎn)B.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時(shí),一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)△PEQ的面積為S,求S與t時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫(xiě)出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)p,q都是實(shí)數(shù),且.我們規(guī)定:滿(mǎn)足不等式的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為.對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿(mǎn)足:當(dāng)時(shí),有,我們就稱(chēng)此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若實(shí)數(shù)c,d滿(mǎn)足,且,當(dāng)二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時(shí),求c,d的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
“兄弟餐廳”采購(gòu)員某日到集貿(mào)市場(chǎng)采購(gòu)草魚(yú),若當(dāng)天草魚(yú)的采購(gòu)單價(jià)(元)與采購(gòu)量(斤)之間的關(guān)系如圖,且采購(gòu)單價(jià)不低于4元/斤.
(1)直接寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)若這天他采購(gòu)草魚(yú)的量不多于20斤,那么這天他采購(gòu)草魚(yú)最多用去多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車(chē)運(yùn)往某地,已知這列貨車(chē)掛有A、B兩種不同規(guī)格的貨車(chē)車(chē)廂共40節(jié),使用A型車(chē)廂每節(jié)費(fèi)用為6000元,使用B型車(chē)廂每節(jié)費(fèi)用為8000元。
(1)設(shè)運(yùn)送這批貨物的總費(fèi)用為萬(wàn)元,這列貨車(chē)掛A型車(chē)廂節(jié),試寫(xiě)出與之間的函數(shù)關(guān)系式;
(2)如果每節(jié)A型車(chē)廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車(chē)廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車(chē)廂的節(jié)數(shù),那么共有哪幾種安排車(chē)廂的方案?
(3)在上述方案中,哪種方案運(yùn)費(fèi)最省,最少運(yùn)費(fèi)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
暑假期間,兩位家長(zhǎng)計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報(bào)價(jià)均為每人1000元的兩家旅行社。經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩位家長(zhǎng)全額收費(fèi),學(xué)生都按7折收費(fèi);乙旅行社的優(yōu)惠條件是:學(xué)生、家長(zhǎng)都按8折收費(fèi)。假設(shè)這兩位家長(zhǎng)帶領(lǐng)名學(xué)生去旅行,甲、乙旅行社的收費(fèi)分別為,
(1)、寫(xiě)出與的函數(shù)關(guān)系式。
(2)、學(xué)生人數(shù)在什么情況下,選擇甲旅行社更省錢(qián)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com