【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點(diǎn)A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點(diǎn)B到路面的距離為4.0m.請(qǐng)求出路面CD的寬度.(精確到0.1m

【答案】11.3m.

【解析】

連接OC,求出OCOE,根據(jù)勾股定理求出CE,根據(jù)垂徑定理求出CD即可.

連接OC,求出OCOE,根據(jù)勾股定理求出CE,根據(jù)垂徑定理求出CD即可.

【解答】

解:如圖,連接OCABCDE,

由題意知:AB=1.6+6.4+4=12,

所以OCOB=6,

OEOBBE=6﹣4=2,

由題意可知:ABCD,

AB過(guò)O

CD=2CE,

在Rt△OCE中,由勾股定理得:CE

CD=2CE=8≈11.3m,

所以路面CD的寬度為11.3m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC中,邊長(zhǎng)為6,D、E分別是ABAC的中點(diǎn),連接DE,將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到AMN,其中D、E的對(duì)應(yīng)點(diǎn)分別是M、N,直線BM與直線CN交于點(diǎn)F,若旋轉(zhuǎn)360°,則點(diǎn)F經(jīng)過(guò)的路徑長(zhǎng)是( 。

A.B.8C.D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)Ax軸正半軸上,點(diǎn)B的坐標(biāo)為(3,4),且B,C不在同一象限內(nèi),若反比例函數(shù)y的圖象經(jīng)過(guò)線段AB的中點(diǎn)D,則四邊形ODBC的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的對(duì)角線經(jīng)過(guò)原點(diǎn),與交于點(diǎn)軸于點(diǎn),點(diǎn)D的坐標(biāo)為反比例函數(shù)的圖象恰好經(jīng)過(guò)兩點(diǎn).

(1)的值及所在直線的表達(dá)式;

(2)求證:.

(3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片,將分別沿折疊(),點(diǎn)和點(diǎn)都與點(diǎn)重合;再將沿折疊,點(diǎn)落在線段上點(diǎn)處.

1)判斷中有哪幾對(duì)相似三角形? (不需說(shuō)明理由)

2)如果,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別是、,為頂點(diǎn).

1)求、的值和頂點(diǎn)的坐標(biāo);

2)在軸上是否存在點(diǎn),使得是以為斜邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為矩形,OA=4OC=5,正比例函數(shù)y=2x的圖像交AB于點(diǎn)D,連接DC,動(dòng)點(diǎn)QD點(diǎn)出發(fā)沿DC向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)PC點(diǎn)出發(fā)沿CO向終點(diǎn)O運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位,設(shè)從出發(fā)起運(yùn)動(dòng)了t s

1)求點(diǎn)D的坐標(biāo);

2)若PQOD,求此時(shí)t的值?

3)是否存在時(shí)刻某個(gè)t,使SDOP=SPCQ?若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說(shuō)明理由;

4)當(dāng)t為何值時(shí),DPQ是以DQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門口某超市購(gòu)進(jìn)一批水杯,其中A種水杯進(jìn)價(jià)為每個(gè)15元,售價(jià)為每個(gè)25元;B種水杯進(jìn)價(jià)為每個(gè)12元,售價(jià)為每個(gè)20

1)該超市平均每天可售出60個(gè)A種水杯,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),A種水杯單價(jià)每降低1元,則平均每天的銷量可增加10個(gè).為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價(jià)調(diào)整為每個(gè)m元,結(jié)果當(dāng)天銷售A種水杯獲利630元,求m的值.

2)該超市準(zhǔn)備花費(fèi)不超過(guò)1600元的資金,購(gòu)進(jìn)A、B兩種水杯共120個(gè),其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請(qǐng)為該超市設(shè)計(jì)獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCADE中,ACB=AED=90°,連接BD、CE,EAC=DAB.

1)求證:ABC ∽△ADE;

2)求證:BAD ∽△CAE;

3)已知BC=4,AC=3,AE=.將AED繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)E落在線段CD上時(shí),求 BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案