【題目】如圖,AB為⊙O的直徑,AE為⊙O的切線,若tan∠ABE= ,AE=3,求BD的長.
【答案】解:∵AB為⊙O的直徑, ∴∠ADB=90°,∴∠ADE=90°,
∵AE為⊙O的切線,
∴∠EAB=90°,
∵∠E=∠E,
∴△EAD∽△EBA,∴ ,
∴AE2=EDEB,
在Rt△AEB中,AE=3,tan∠ABE= ,
∴ ,∴AB=6,
∴BE= =
∴32=ED3 ,
∴ED= ,
∴BD=BE﹣ED=3 ﹣ = .
【解析】由AB為⊙O的直徑,得到∠ADB=90°,根據鄰補角的定義得到∠ADE=90°,根據切線的性質得到∠EAB=90°,推出△EAD∽△EBA,根據相似三角形的性質得到 ,得到AE2=EDEB,根據三角函數的定義得到AB=6,由勾股定理得到BE= = ,即可得到結論.
【考點精析】利用切線的性質定理對題目進行判斷即可得到答案,需要熟知切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s= ,當t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關部門接到求救信號后,立即調遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠?(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學習完“利用三角函數測高”這節(jié)內容之后,某興趣小組開展了測量學校旗桿高度的實踐活動,如圖,在測點A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點A到旗桿底部C的水平距離AC=20m,根據測量數據,求旗桿CD的高度.(參考數據:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3 ,在△ABC內作第一個內接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內作第二個內接正方形HIKJ;再取線段KJ的中點Q,在△QHI內作第三個內接正方形…依次進行下去,則第2014個內接正方形的邊長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小華觀察鐘面(圖1),了解到鐘面上的分針每小時旋轉360度,時針毎小時旋轉30度.他為了進一步探究鐘面上分針與時針的旋轉規(guī)律,從下午2:00開始對鐘面進行了一個小時的觀察.為了探究方便,他將分針與分針起始位置OP(圖2)的夾角記為y1 , 時針與OP的夾角記為y2度(夾角是指不大于平角的角),旋轉時間記為t分鐘.觀察結束后,他利用獲得的數據繪制成圖象(圖3),并求出y1與t的函數關系式: 請你完成:
(1)求出圖3中y2與t的函數關系式;
(2)直接寫出A、B兩點的坐標,并解釋這兩點的實際意義;
(3)若小華繼續(xù)觀察一個小時,請你在題圖3中補全圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】⊙O為△ABC的外接圓,請僅用無刻度的直尺,根據下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).
(1)如圖1,AC=BC
(2)如圖2,直線l與⊙O相切于點P,且l∥BC。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com