【題目】某商場(chǎng)銷(xiāo)售一種商品,在一段時(shí)間內(nèi),該商品的銷(xiāo)售量y(千克)與每千克的銷(xiāo)售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系(如圖所示),其中30≤x≤80.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當(dāng)每千克的銷(xiāo)售價(jià)為多少元時(shí),獲得的利潤(rùn)為600元?

【答案】
(1)解:當(dāng)30≤x≤80時(shí),設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0).

由所給函數(shù)圖象可知, ,

解得 ,

故y與x的函數(shù)關(guān)系式為y=﹣x+100;


(2)解:∵y=﹣x+100,依題意得

∴(x﹣30)(﹣x+100)=600,

x2﹣280x+18700=0,

解得x1=40,x2=90.

∵30≤x≤80,

∴取x=40.

答:當(dāng)每千克的銷(xiāo)售價(jià)為40元時(shí),獲得的利潤(rùn)為600元.


【解析】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)所給函數(shù)圖象列出關(guān)于k、b的關(guān)系式,求出k、b的值即可;(2)根據(jù)每天可獲得600元的利潤(rùn)列出方程,解方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AD=18,點(diǎn)E在A(yíng)C上且CE= AC,連接BE,與AD相交于點(diǎn)F.若BE=15,則△DBF的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點(diǎn),OA=6,OB=8,將△COD繞O點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,則MP的最大值( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解分式方程.
(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè) 的函數(shù)圖像經(jīng)過(guò)平移后能與某反比例函數(shù)的圖像重合,那么稱(chēng)這個(gè)函數(shù)是 的“反比例平移函數(shù)”.
例如: 的圖像向左平移2個(gè)單位,再向下平移1個(gè)單位得到 的圖像,則 的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3) .點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)” 的圖像經(jīng)過(guò)B、E兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為;這個(gè)“反比例平移函數(shù)”的圖像經(jīng)過(guò)適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖像重合,請(qǐng)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式

(3)在(2)的條件下, 已知過(guò)線(xiàn)段BE中點(diǎn)的一條直線(xiàn) 交這個(gè)“反比例平移函數(shù)”圖像于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在等腰△ABC中,AB=AC,F(xiàn)為AB邊上的中點(diǎn),延長(zhǎng)CB至D,使得BD=BC,連接AD交CF的延長(zhǎng)線(xiàn)于E.
(1)如圖1,若∠BAC=60°,求證:△CED為等腰三角形

(2)如圖2,若∠BAC≠60°,(1)中結(jié)論還成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由.

(3)如圖3,當(dāng) =是(直接填空),△CED為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解方程: + =4
(2)解不等式組 ,并把它們的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列藝術(shù)字中既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案