【題目】如圖,在Rt△ACDRt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )

A. Rt△ACDRt△BCE全等 B. OA=OB

C. EAC的中點 D. AE=BD

【答案】C

【解析】試題分析:A∵∠C=∠C=90°,∴△ACD△BCE是直角三角形,在Rt△ACDRt△BCE中,

∵AD=BEDC=CE,∴Rt△ACD≌Rt△BCEHL),正確;

B∵Rt△ACD≌Rt△BCE,∴∠B=∠ACB=CA,∵CD=CE∴AE=BD,在△AOE△BOD中,

∵∠A=∠B∠AOE=∠BOD,AE=BD,∴△AOE≌△BODAAS),∴AO=OB,正確,不符合題意;

AE=BD,CE=CD,不能推出AE=CE,錯誤,符合題意;

D∵Rt△ACD≌Rt△BCE,∴∠B=∠A,CB=CA,∵CD=CE,∴AE=BD,正確,不符合題意.

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(圖1),后人稱其為“趙爽弦圖”,由弦圖變化得到圖2,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=12,則S2的值為_______

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方體六個面展開如圖所示,六個面分別用字母A、B、C、D、E、F表示,已知:A=x2﹣4xy+3y2,B=(C﹣A),C=3x2﹣2xy﹣y2,E=B﹣2C,若正方體相對的兩個面上的多項式的和相等,求D、F.(用含x,y的多項式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)
;
(2)(x-1)2-(x+1)(x-3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD、BE是邊AB和AC上的高,點M在BE的延長線上,且BM=AC,點N在CD上,且AB=CN,則∠MAN的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).
(1)求直線BC的關系式;
(2)連結(jié)DE,將線段DE繞點D按順時針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的頂點F落在△ABC的邊上?若存在,求出所有的n值并直接寫出此時正方形DEFG與△ABC重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【概念學習】規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫除方,如, 等.類比有理數(shù)乘方,我們把記作,讀作“2的圈3次方” 記作,讀作“的圈4次方”.一般地,把≠0)記作,讀作“a的圈c次方”.

【初步探究】

1)直接寫出計算結(jié)果: =______________, =______________

(2)關于除方,下列說法錯誤的是( )

A.任何非零數(shù)的圈3次方都等于它的倒數(shù) B.對于任何正整數(shù)c =1

C D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)

【深入思考】

我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

==

(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.

=___________; =_____________; =____________

(2)想一想:將一個非零有理數(shù)a的圈cc≥3)次方寫成冪的形式等于___________.

3)算一算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當a、b滿足條件a>b>0時, =1表示焦點在x軸上的橢圓.若 =1表示焦點在x軸上的橢圓,則m的取值范圍是

查看答案和解析>>

同步練習冊答案