【題目】為了豐富學(xué)生課余生活,某區(qū)教育部門(mén)準(zhǔn)備在七年級(jí)開(kāi)設(shè)興趣課堂.為了了解學(xué)生對(duì)音樂(lè)、書(shū)法、球類(lèi)、繪畫(huà)這四個(gè)興趣小組的喜愛(ài)情況,在全區(qū)進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中音樂(lè)部分的圓心角的度數(shù)
(3)如果該區(qū)七年級(jí)共有2000名學(xué)生參加這4個(gè)課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫(huà)興趣小組至少需要準(zhǔn)備多少名教師?
【答案】(1)300名;(2)補(bǔ)圖見(jiàn)解析;96°;(3)需準(zhǔn)備20名教師輔導(dǎo).
【解析】
(1)根據(jù)球類(lèi)人數(shù)及其所占百分比可得總?cè)藬?shù);(2)根據(jù)各組人數(shù)之和等于總?cè)藬?shù)求得音樂(lè)人數(shù),據(jù)此可補(bǔ)全條形圖;再用360°乘以音樂(lè)人數(shù)所占比例可得圓心角度數(shù);(3)總?cè)藬?shù)乘以樣本中繪畫(huà)人數(shù)所占比例,再除以20即可得.
解:(1)此次調(diào)查的學(xué)生人數(shù)為120÷40%=300(名);
(2)音樂(lè)的人數(shù)為300﹣(60+120+40)=80(名),
補(bǔ)全條形圖如下:
扇形統(tǒng)計(jì)圖中音樂(lè)部分的圓心角的度數(shù)為360°×=96°;
(3)60÷300×2000÷20=20.
∴需準(zhǔn)備20名教師輔導(dǎo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H.點(diǎn)G在⊙O上,過(guò)點(diǎn)G作直線EF,交CD延長(zhǎng)線于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.連接AG交CD于K,且KE=GE.
(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC∥EF,,F(xiàn)B=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年俄羅斯世界杯組委會(huì)對(duì)世界杯比賽用球進(jìn)行抽查,隨機(jī)抽取了100個(gè)足球,檢測(cè)每個(gè)足球的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足部分分別用正、負(fù)數(shù)來(lái)表示,記錄如表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
個(gè)數(shù) | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每個(gè)足球的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?用你學(xué)過(guò)的方法合理解釋?zhuān)?/span>
(2)若每個(gè)足球標(biāo)準(zhǔn)質(zhì)量為420克,則抽樣檢測(cè)的足球的總質(zhì)量是多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著地面公交和共享單車(chē)的發(fā)展,“公交車(chē)+單車(chē)”的方式已成為很多市民出行的選擇。小明放學(xué)后從壽春中學(xué)出發(fā),先乘坐公交車(chē),根據(jù)路面交通的擁堵的實(shí)際情況,靈活決定在離家較近的A、B、C、D、E中的某一公交站下車(chē),再騎共享單車(chē)回家,設(shè)他乘公交車(chē)的時(shí)間y1(單位:分鐘)與下車(chē)站點(diǎn)到學(xué)校距離x(3≤x≤5)(單位:千米)之間函數(shù)關(guān)系為y1=2x+2,小明騎單車(chē)的時(shí)間y2(單位:分鐘)與x(3≤x≤5)之間的滿足二次函數(shù)關(guān)系,其具體對(duì)應(yīng)值如下表所示:
地鐵站 | A | B | C | D | E |
X(千米) | 3 | 4 | 5 | ||
Y2(分鐘) | 11 | 6 | 3 |
(1)求y2關(guān)于x的函數(shù)表達(dá)式;
(2)求小明從學(xué)校回到家的時(shí)間y(單位:分鐘)與x的函數(shù)表達(dá)式;
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明:小明應(yīng)選擇在哪一站下公交車(chē),才能使他從學(xué)校回家所需的時(shí)間最短?并求出最短時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移.使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫(huà)出平移后的△A′B′C′(不寫(xiě)畫(huà)法),并直接寫(xiě)出點(diǎn)B′的坐標(biāo):B′(_____________);
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是(________________);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對(duì)角線AC,BD相交于點(diǎn)O,OE⊥AB,OF⊥CB,垂足分別是E、F.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線L1:y=bx+c與拋物線L2:y=ax2的兩個(gè)交點(diǎn)坐標(biāo)分別為A(m,4),B(1,1).
(1)求m的值;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線與L1,L2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),請(qǐng)直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移.使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫(huà)出平移后的△A′B′C′(不寫(xiě)畫(huà)法),并直接寫(xiě)出點(diǎn)B′的坐標(biāo):B′(_____________);
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是(________________);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD,AB=10,BC=13,點(diǎn)P為邊AD上一動(dòng)點(diǎn),點(diǎn)A’與點(diǎn)A關(guān)于BP對(duì)稱(chēng),連結(jié)A’C,當(dāng)△A’BC為等腰三角形時(shí),AP的長(zhǎng)度為()
A.2B.C.2或D.2或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com