【題目】一種商品的標(biāo)準(zhǔn)價(jià)格是200元,但隨著季節(jié)的變化,商品的價(jià)格可浮動(dòng),想一想.
的含義是什么?
請(qǐng)你計(jì)算出該商品的最高價(jià)格和最低價(jià)格;
如果以標(biāo)準(zhǔn)價(jià)為標(biāo)準(zhǔn),超過(guò)標(biāo)準(zhǔn)價(jià)記“”,低于標(biāo)準(zhǔn)價(jià)記“”,該商品價(jià)格的浮動(dòng)范圍又可以怎樣表示?
【答案】表示比標(biāo)準(zhǔn)高,表示比標(biāo)準(zhǔn)價(jià)低;元,元;元.
【解析】在一對(duì)具有相反意義的量中,先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示;
(1)根據(jù)題意可知可以上漲,也可能下調(diào),據(jù)此解答即可;
(2)根據(jù)給出的條件列式計(jì)算即可解答;
(3)根據(jù)題意,求出商品價(jià)格的浮動(dòng)范圍.
(1)±10%的含義是:在標(biāo)準(zhǔn)價(jià)的基礎(chǔ)上,加價(jià)和降價(jià)的幅度不超過(guò)10%;
(2)最高價(jià)為:200+200×10%=220(元)最低價(jià)為:200×(110%)=180(元);
答:該商品的最高價(jià)格是220元,最低價(jià)格是180元;
(3)因?yàn)?/span>220200=20(元),200180=20(元),
所以這件商品加價(jià)和降價(jià)的幅度不超過(guò)20元,
所以,這件商品價(jià)格的浮動(dòng)范圍又可以表示為±20元;
答:該商品價(jià)格的浮動(dòng)范圍為±20元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問(wèn)題:
(1)A、B兩地之間的距離: km;
(2)甲的速度為 km/h;乙的速度為30km/h;
(3)點(diǎn)M的坐標(biāo)為 ;
(4)求:甲離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:
①該拋物線的對(duì)稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過(guò)第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.
(1)求b的值;
(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把成績(jī)結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)求本次抽樣測(cè)試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該市九年級(jí)共有學(xué)生9000名,如果全部參加這次體育測(cè)試,則測(cè)試等級(jí)為D的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D在反比例函數(shù)y= 的圖象上,過(guò)點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過(guò)點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC= .
(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;
(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A為函數(shù)y= (x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y= (x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長(zhǎng),且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
【答案】B
【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,
∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,
∴c=2a,c=2b,
∴a=b,且a2+b2=c2,
∴△ABC為等腰直角三角形.
故選B.
【題型】單選題
【結(jié)束】
11
【題目】將圖1中陰影部分的小長(zhǎng)方形變換到圖2的位置,你能根據(jù)兩個(gè)圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以菱形ABCD對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,A、B兩點(diǎn)的坐標(biāo)分別為(﹣2 ,0)、(0,﹣ ),直線DE⊥DC交AC于E,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿著A→D→C的路線向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PDE的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求直線DE的解析式;
(2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),∠EPD+∠DCB=90°?并求出此時(shí)直線BP與直線AC所夾銳角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com