【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點(diǎn),現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實(shí)數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結(jié)論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
【答案】D
【解析】解:∵b>a>0
∴﹣ <0,
所以①正確;
∵拋物線與x軸最多有一個交點(diǎn),
∴b2﹣4ac≤0,
∴關(guān)于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正確;
∵a>0及拋物線與x軸最多有一個交點(diǎn),
∴x取任何值時,y≥0
∴當(dāng)x=﹣1時,a﹣b+c≥0;
所以③正確;
當(dāng)x=﹣2時,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正確.
故選:D.
從拋物線與x軸最多一個交點(diǎn)及b>a>0,可以推斷拋物線最小值最小為0,對稱軸在y軸左側(cè),并得到b2﹣4ac≤0,從而得到①②為正確;由x=﹣1及x=﹣2時y都大于或等于零可以得到③④正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的正方形,在正方形的一個角上剪去長方形CEFG,其中E,G分別是邊CD,BC上的點(diǎn),且CE=3,CG=2,剩余部分是六邊形ABGFED,請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系求六邊形ABGFED各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空完成推理過程:
如圖,AD⊥BC于點(diǎn)D,EG⊥BC于點(diǎn)G,AD平分∠BA C. 求證: ∠E=∠1.
證明: ∵AD⊥BC于點(diǎn)D,EG⊥BC于點(diǎn)G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定義)
∴AD∥EG,( )
∴∠1= ,( )
∠E=∠3,(兩直線平行,同位角相等)
∵AD平分∠BAC,(已知)
∴∠2=∠3,( )
∴∠E=∠1.(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4 cm,AD=12 cm,點(diǎn)P在AD邊上以每秒1 cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動,點(diǎn)Q在BC邊上,以每秒4 cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動,兩個點(diǎn)同時出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時停止(同時點(diǎn)Q也停止),在這段時間內(nèi),當(dāng)運(yùn)動時間=_____時線段PQ∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( )
A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3
C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD的平分線與∠ADC的平分線相交于點(diǎn)E,∠ABC的平分線與∠BCD的平分線相交于點(diǎn)F,則∠E與∠F的數(shù)量關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種商品的標(biāo)準(zhǔn)價格是200元,但隨著季節(jié)的變化,商品的價格可浮動,想一想.
的含義是什么?
請你計(jì)算出該商品的最高價格和最低價格;
如果以標(biāo)準(zhǔn)價為標(biāo)準(zhǔn),超過標(biāo)準(zhǔn)價記“”,低于標(biāo)準(zhǔn)價記“”,該商品價格的浮動范圍又可以怎樣表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點(diǎn),點(diǎn)E在AC上,DE⊥AB,則cosA的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com