【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).
(1)將線段平移得到線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).
①點(diǎn)平移到點(diǎn)的過程可以是:先向 平移 個(gè)單位長度,再向 平移 個(gè)單位長度;
②點(diǎn)的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫出圖形并求的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在和中,,,將如圖擺放,使得的兩條邊分別經(jīng)過點(diǎn)和點(diǎn).
(1)當(dāng)將如圖1擺放時(shí),則_________度.
(2)當(dāng)將如圖2擺放時(shí),請(qǐng)求出的度數(shù),并說明理由.
(3)能否將擺放到某個(gè)位置時(shí),使得、同時(shí)平分和?直接寫出結(jié)論_______(填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長分別是5,6和8,因?yàn)?/span>,所以這個(gè)三角形是常態(tài)三角形。
(1)若△ABC三邊長分別是2,和4,則此三角形_________常態(tài)三角形(填“是”或“不是”);
(2)若Rt△ABC是常態(tài)三角形,則此三角形的三邊長之比為__________________(請(qǐng)按從小到大排列);
(3)如圖,Rt△ABC中,∠ACB=90°,BC=6,點(diǎn)D為AB的中點(diǎn),連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與矩形EFGH在直線l的同側(cè),邊AD,EH在直線l上,且AD=5cm,EH=4cm,EF=3cm.保持正方形ABCD不動(dòng),將矩形EFGH沿直線l左右移動(dòng),連接BF,CG,則BF+CG的最小值為_____________cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=2∠B,如圖①,當(dāng)∠C=90°,AD為∠BAC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.
(1)如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請(qǐng)直接寫出你的猜想:
(2)如圖③,當(dāng)AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)你的猜想給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點(diǎn),并且y1<0<y2<y3,則下列各式中正確的是( )
A.x1<x2<x3 B.x1<x3<x2
C.x2<x1<x3 D.x2<x3<x1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,BE平分∠ABC且交邊AD于點(diǎn)E,如果AB=6cm,BC=10cm,
試求:⑴□ABCD的周長;⑵線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商店計(jì)劃從廠家購進(jìn)兩種不同型號(hào)的電風(fēng)扇,若購進(jìn)8臺(tái)型和20臺(tái)型電風(fēng)扇,需資金7600元,若購進(jìn)4臺(tái)型和15臺(tái)型電風(fēng)扇,需資金5300元.
(1)求型電風(fēng)扇每臺(tái)的進(jìn)價(jià)各是多少元;
(2)該商店經(jīng)理計(jì)劃進(jìn)這兩種電風(fēng)扇共50臺(tái),而可用于購買這兩種電風(fēng)扇的資金不超過12800元,根據(jù)市場(chǎng)調(diào)研,銷售一臺(tái)型電風(fēng)扇可獲利80元,銷售一臺(tái)型電風(fēng)扇可獲利120元.若兩種電扇銷售完時(shí),所獲得的利潤不少于5000元.問有哪幾種進(jìn)貨方案?哪種方案獲得最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2
(1)求實(shí)數(shù)k的取值范圍。
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com