若有理數(shù)a、b滿足ab>0,且a+b<0,則下列說法正確的是(     )

    A.a(chǎn)、b可能一正一負;           B.a(chǎn)、b都是正數(shù)

C.a(chǎn)、b都是負數(shù);               D.a(chǎn)、b中可能有一個為0

 

【答案】

【解析】解:若有理數(shù)a、b滿足ab>0,則a,b同號,排除A,D選項;

且a+b<0,則排除a,b都是正數(shù)的可能,排除B選項;

則說法正確的是a,b都是負數(shù),C正確.

故選C.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

請觀察下列算式,找出規(guī)律并填空
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
1
4×5
=
1
4
-
1
5

則第10個算式是
 
=
 
,
第n個算式為
 
=
 

根據(jù)以上規(guī)律解答下題:
若有理數(shù)a,b滿足|a-1|+(b-3)2=0,試求:
1
ab
+
1
(a+2)(b+2)
+
1
(a+4)(b+4)
+…+
1
(a+100)(b+100)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、若有理數(shù)a、b滿足ab>0,且a+b<0,則下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、若有理數(shù)a,b滿足|a-2|+(b+2)2=0,則ab2=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀以下材料:
1
2×3
=
1
2
-
1
3
; 
1
2×4
=
1
2
(
1
2
-
1
4
)
; 
1
3×6
=
1
3
(
1
3
-
1
6
)
1
1×5
=
1
4
(
1
1
-
1
5
)

(1)觀察以上式子,其規(guī)律可用
1
n×(n+k)
=
1
k
(
1
n
-
1
n+k
)
1
k
(
1
n
-
1
n+k
)
表示
(2)根據(jù)以上規(guī)律,若有理數(shù)a、b滿足|a-1|+|b-3|=0,試求:
1
ab
+
1
(a+2)(b+2)
+
1
(a+4)(b+4)
+
1
(a+6)(b+6)
+…+
1
(a+100)(b+100)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若有理數(shù)x,y滿足|x|=7,|y|=4,且|x+y|=x+y,則x-y=
3或11
3或11

查看答案和解析>>

同步練習冊答案