精英家教網 > 初中數學 > 題目詳情

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

【答案】見解析

【解析】

本題求小汽車是否超速,其實就是求BC的距離,直角三角形ABC中,有斜邊AB的長,有直角邊AC的長,那么BC的長就很容易求得,根據小汽車用2s行駛的路程為BC,那么可求出小汽車的速度,然后再判斷是否超速了.

解:在RtABC中,AC=30mAB=50m;
據勾股定理可得:
BC=40m
∴小汽車的速度為v==20m/s=20×3.6km/h=72km/h);
72km/h)>70km/h);
∴這輛小汽車超速行駛.
答:這輛小汽車超速了.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分ACABM,

1)求∠BCM的度數;(2)若AB=5,BC=3,求△BCM的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數關系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數關系.請根據圖象,解答下列問題:

(1)線段CD表示轎車在途中停留了 h;

(2)求線段DE對應的函數解析式;

(3)求轎車從甲地出發(fā)后經過多長時間追上貨車.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,采用分階段計費的方法按月計算每戶家庭的水費:月用水量不超過20m3時,按2/m3計算;月用水量超過20m3時,其中的20m3仍按2/m3計算,超過部分按2.6/m3計算.設某戶家庭月用水量xm3

月份

4

5

6

用水量

15

17

21

(1)用含x的式子表示:

0≤x≤20時,水費為   元;

x>20時,水費為   元.

(2)小花家第二季度用水情況如上表,小花家這個季度共繳納水費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=ACCD是△ACB的角平分線.若在邊AC上截取CE=CB,連接DE,則圖中等腰三角形共有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,用一根12米長的木材做一個中間有一條橫檔的日字形窗戶.設ABx米.

(1)用含有x的代數式表示線段AC的長.

(2)若使透進窗戶的光線達到6平方米,則窗戶的長和寬各為多少?

(3)透進窗戶的光線能達到9平方米嗎?若能,請求出這個窗戶的長和寬;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應點是點G,過點BBECG,垂足為E且在AD上,BEPC于點F.

(1)如圖1,若點EAD的中點,求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當AD=25,且AE<DE時,求cosPCB的值;

③當BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究

(1)已知如圖1,若ABCDP為平行線內的一點請你判斷∠B+P+D= 度,并說明理由.

(2)如圖2,若ABCD ,P1、P2為平行線內的兩個點,請求出∠B+P1+P2+D= (不需要說明理由)

(3)如圖3,如此類推若ABCDP1、P2、P3P4、……Pn為平行線內的n個點,請求出∠B+P1+P2+P3+……+Pn-1+Pn+D= (不需要說明理由)

查看答案和解析>>

同步練習冊答案