【題目】如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α(0°<α<90°),使點A,D,E在同一直線上,連接AD,BE.
(1)①依題意補全圖2;
②求證:AD=BE,且AD⊥BE;
③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;
(2)如圖3,正方形ABCD邊長為 , 若點P滿足PD=1,且∠BPD=90°,請直接寫出點A到BP的距離.
【答案】解:(1)①依照題意補全圖2,如下圖(一)所示.
②證明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,
∴∠ACD=∠BCE.
∵△ABC和△CDE都是等腰直角三角形,
∴AC=BC,DC=EC.
在△ADC和△BEC中,有,
∴△ADC≌△BEC(SAS),
∴AD=BE,∠BEC=∠ADC.
∵點A,D,E在同一直線上,△CDE是等腰直角三角形,
∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,
∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,
∴AD⊥BE.
③依照題意畫出圖形,如圖(二)所示.
∵S△ABC+S△EBC=S△CAE+S△EAB ,
即ACBC+BECM=AE(CM+BE),
∴AC2﹣AEBE=CM(AE﹣BE).
∵△CDE為等腰直角三角形,
∴DE=2CM,
∴AE﹣BE=2CM,
∴CM=.
(2)依照題意畫出圖形(三).
其中AB=,DP=1,BD=AB=
由勾股定理得:BP==3.
結(jié)合(1)③的結(jié)論可知:
AM===1.
故點A到BP的距離為1.
【解析】(1)①根據(jù)旋轉(zhuǎn)的特性畫出圖象;②由∠ACD、∠BCE均與∠DCB互余可得出∠ACD=∠BCE,由△ABC和△CDE都是等腰直角三角形可得出AC=BC、DC=EC,結(jié)合全等三角形的判定定理SAS即可得出△ADC≌△BEC,從而得出AD=BE,再由∠BCE=∠ADC=135°,∠CED=45°即可得出∠AEB=90°,即證出AD⊥BE;③依照題意畫出圖形,根據(jù)組合圖形的面積為兩個三角形的面積和可用AE,BE去表示CM;
(2)根據(jù)題意畫出圖形,比照(1)③的結(jié)論,套入數(shù)據(jù)即可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小平為了測量學(xué)校教學(xué)樓的高度,她先在A處利用測角儀測得樓頂C的仰角為30°,再向樓的方向直行50米到達B處,又測得樓頂C的仰角為60度.已知測角儀的高度是1.2米,請你幫助小平計算出學(xué)校教學(xué)樓的高度CO.()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運用加法的運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當(dāng)?shù)氖?/span>( )
A. [ (+6)+ (+4)+18]+[ (-18)+(-6.8)+(-3.2)]
B. [ (+6)+ (-6.8)+(+4)]+[(-18)+18+(-3.2)]
C. [ (+6)+ (-18)]+[ (+4)+(-6.8)]+[18+(-3.2)]
D. [ (+6)+ (+4)]+[(-18)+18]+[(-3.2)+(-6.8)]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在“筑夢少年正當(dāng)時,不忘初心跟黨走”知識竟賽中,七年級(2)班2人獲一等獎,1人獲二等獎,3人獲三等獎,獎品價值41元;七年級(7)班1人獲一等獎,3人獲二等獎,3人獲三等獎,獎品價值37元;七年級(13)班5人獲二等獎,3人獲三等獎,獎品價值_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:
①旋轉(zhuǎn)角是____度;
②線段OD的長為_____;
③求∠BDC的度數(shù).
(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,∠A0B=135,OA=1,0B=2,求0C的長.
小明同學(xué)借用了圖1的方法,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,請你繼續(xù)用小明的思路解答,或是選擇自己的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個點中,哪一個點表示的數(shù)的平方值最大( 。
A. P B. R C. Q D. T
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長和寬分別是a,b的長方形的四個角都剪去一個邊長為x的正方形,折疊后,做成一無蓋的盒子(單位:cm).
(1)用a,b,x表示紙片剩余部分的面積;
(2)用a,b,x表示盒子的體積;
(3)當(dāng)a=10,b=8且剪去的每一個小正方形的面積等于4 cm2時,求剪去的每一個正方形的邊長及所做成的盒子的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2=交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當(dāng)x=﹣3或1時,y1=y2;
②當(dāng)﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉(zhuǎn)化:
當(dāng)x=0時,原不等式不成立;
當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= , 在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4=如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo)
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.
(1)計算AC2+BC2的值等于 ;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個平行四邊形ABEF,使得該平行四邊形的面積等于16;
(3)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個矩形ABMN,使得該矩形的面積等于AC2+BC2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com