某數(shù)學興趣小組開展了一次課外活動,過程如下:如圖1,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.

(1)求證:DP=DQ;

(2)如圖2,小明在圖1的基礎上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關系,請猜測他的結(jié)論并予以證明;

(3)如圖3,固定三角板直角頂點在D點不動,轉(zhuǎn)動三角板,使三角板的一邊交AB的延長線于點P,另一邊交BC的延長線于點Q,仍作∠PDQ的平分線DE交BC延長線于點E,連接PE,若AB:AP=3:4,請幫小明算出△DEP的面積.

 

 

【答案】

(1)詳見試題解析;(2)詳見試題解析;(3)

【解析】

試題分析:

(1)證明△ADP≌△CDQ,即可得到結(jié)論:DP=DQ;

(2)證明△DEP≌△DEQ,即可得到結(jié)論:PE=QE;

(3)與(1)(2)同理,可以分別證明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的長度,從而可求得SDEQ=,而△DEP≌△DEQ,所以SDEP=SDEQ=

試題解析:(1)證明:∵∠ADC=∠PDQ=90°

∴∠ADP=∠CDQ

∠DAP=∠DCQ=90°  AD=CD

∴△ADP≌△CDQ(ASA)

∴DP=DQ                                (4分)

(2)猜測:PE=QE                    (5分)

由(1)可知,DP=DQ

∠PDE=∠QDE=45°  DE=DE

∴△DEP≌△DEQ(SAS)

∴PE=QE                             (8分)

(3)∵AB:AP=3:4,AB=6

∴AP=8,BP=2

與(1)同理,可以證明△ADP≌△CDQ

∴CQ=AP=8

與(2)同理,可以證明△DEP≌△DEQ

∴PE=QE

設QE=PE=x,則BE=BC+CQ-QE=14-x

在Rt△BPE中,由勾股定理得:BP2+BE2=PE2

即:22+(14-x)2=x2,

解得:x=  即QE=

∴SDEQ=××6=

∵△DEP≌△DEQ

∴SDEP=SDEQ=                (12分)

考點:四邊形綜合題.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某數(shù)學興趣小組開展了一次活動,過程如下:
設∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動一:
如圖甲所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在端點處互相垂直,A1A2為第1根小棒.
數(shù)學思考:
(1)小棒能無限擺下去嗎?答:
 
.(填“能“或“不能”)
(2)設AA1=A1A2=A2A3=1.
①θ=
 
度;
②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,…),求出此時a2,a3的值,并直接寫出an(用含n的式子表示).
精英家教網(wǎng)
活動二:
如圖乙所示,從點A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1
數(shù)學思考:
(3)若已經(jīng)向右擺放了3根小棒,則θ1=
 
,θ2=
 
,θ3=
 
(用含θ的式子表示);
(4)若只能擺放4根小棒,求θ的范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•錫山區(qū)一模)某數(shù)學興趣小組開展了一次活動,過程如下:設∠BAC=θ(0°<θ<90°).現(xiàn)把小棒依次擺放在兩射線AB、AC之間,并使小棒兩端分別落在兩射線上,從點A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1
(1)若已經(jīng)向右擺放了3根小棒,且恰好有∠A4A3A=90°,則θ=
22.5°
22.5°

(2)若只能擺放5根小棒,則θ的范圍是
15°≤θ<18°
15°≤θ<18°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德)某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉(zhuǎn)三角板,在探究中得出當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某數(shù)學興趣小組開展了一次活動,過程如下:
設∠BAC=θ(0°<θ<90°).現(xiàn)把小棒依次擺放在兩射線AB,AC之間,并使小棒兩端分別落在兩射線上.活動一:如圖所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在兩端點處互相垂直,A1A2為第1根小棒.
數(shù)學思考:
(1)小棒能無限擺下去嗎?答:
.(填“能”或“不能”)
(2)設AA1=A1A2=A2A3=1.①θ=
22.5
22.5
度; ②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,),求此時a2,a3的值,并直接寫出an(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
學習了無理數(shù)后,某數(shù)學興趣小組開展了一次探究活動:估算
13
的近似值.
小明的方法:
9
13
16
,
13
=3+k(0<k<1).
(
13
)2=(3+k)2

∴13=9+6k+k2
∴13≈9+6k.
解得 k≈
4
6

13
≈3+
4
6
≈3.67.
問題:
(1)請你依照小明的方法,估算
41
的近似值;
(2)請結(jié)合上述具體實例,概括出估算
m
的公式:已知非負整數(shù)a、b、m,若a<
m
<a+1,且m=a2+b,則
m
a+
b
2a
a+
b
2a
(用含a、b的代數(shù)式表示);
(3)請用(2)中的結(jié)論估算
37
的近似值.

查看答案和解析>>

同步練習冊答案