【題目】如圖,在一條東西走向的公路MN的同側(cè)有A,B兩個村莊,村莊B位于村莊A的北偏東60°的方向上(∠QAB=60°),公路旁的貨站P位于村莊A的北偏東15°的方向上,已知PA平分∠BPN,AP=2km,求村莊A,B之間的距離.(計算結(jié)果精確到0.01km,參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)
【答案】村莊A,B之間的距離約為2.23 km.
【解析】
延長AQ交MN于點(diǎn)D,則AD⊥MN,過點(diǎn)P作PC⊥AB于點(diǎn)C.根據(jù)題意可得,∠PAD=15°.然后根據(jù)銳角三角函數(shù)即可求出村莊A,B之間的距離.
解:如圖,延長AQ交MN于點(diǎn)D,
則AD⊥MN,過點(diǎn)P作PC⊥AB于點(diǎn)C.
根據(jù)題意可知:∠PAD=15°,
∴∠APD=90°﹣∠PAD=75°,
∵AP平分∠BPN,
∴∠APD=∠APB=75°,
∵∠QAB=60°,
∴∠PAB=∠QAB﹣∠PAD=45°,
∴∠PBA=180°﹣∠PAB﹣∠APB=60°,
在Rt△APC中,∠ACP=90°,∠PAC=45°,AP=2,
∴,
即,
∴,
∴AC=PC=,
在Rt△PCB中,∠BCP=90°,∠PBA=60°,,
∴,
即,
∴,
∴≈1.414+≈2.23(km).
答:村莊A,B之間的距離約為2.23 km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某小型汽車的側(cè)面示意圖,其中矩形表示該車的后備箱,在打開后備箱的過程中,箱蓋可以繞點(diǎn)逆時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為時,箱蓋落在的位置(將后備箱放大后如圖2所示).已知厘米,厘米,厘米.在圖2中求:
(1)點(diǎn)到的距離(結(jié)果保留根號);
(2)、兩點(diǎn)的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對稱軸上一點(diǎn),則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,、分別為邊、中點(diǎn),連接并延長至點(diǎn),使得,連接.
(1)求證:;
(2)若,,求四邊形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,D是正方形ABCO的邊AB上一點(diǎn),以OD為邊的等邊△ODE,點(diǎn)E在x軸正半軸上,若點(diǎn)B的坐標(biāo)為(3,3),則點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,AF⊥BC于點(diǎn)F,BH⊥AC于點(diǎn)H.交AF于點(diǎn)G,點(diǎn)D在直線AF上運(yùn)動,BD=DE,∠BDE=135°,∠ABH=45°,當(dāng)AE取最小值時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦MN∥BC交AB于點(diǎn)E,且ME=1,AM=2,AE=.
(1)求證:BC是⊙O的切線;
(2)求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=AE.
(1)求證:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°.求∠ACD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com