【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點DAN是△ABC外角∠CAM的平分線,CEAN,垂足為點E

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

【答案】1)(2)見解析

【解析】

試題(1)求出∠BAD=DAC,MAE=CAE,求出∠DAE的度數(shù),求出∠AEC=ADC=EAD=90°,根據(jù)矩形的判定判斷即可;

(2)求出AD=DC,得出∠ACD=DAC=45°,求出∠BAC=90°,即可求出答案.

試題解析:(1)證明:∵在ABC中,AB=AC,ADBC,

∴∠BAD=DAC,

ANABC外角∠CAM的平分線,

∴∠MAE=CAE.

∴∠DAE=DAC+CAE=MAC+CAB=×180°=90°,

又∵ADBC,CEAN,

∴∠ADC=CEA=90°,

∴四邊形ADCE為矩形.

(2)證明:∵四邊形ADCE是正方形,

DC=AD,

∵在ABC中,AB=AC,ADBC,

∴△ADC為等腰直角三角形,

∴∠DAC=ACD=45°,

∴∠BAC=90°,

∴△ABC為等腰直角三角形,

ABC的形狀是等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,數(shù)學家高斯在上學時曾經(jīng)研究過這樣一個問題,1+2+3+…+10=?經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+…+n=n(n+1),其中n為正整數(shù),現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…+ n(n+1)=?

觀察下面三個特殊的等式:

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

3×4=(3×4×5-2×3×4)

將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=×3×4×5=20.

讀完這段材料,請你計算:

(1)1×2+2×3+…+100×101;

(2)1×2+2×3+…+ n(n+1);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等邊△ABD沿BD中點旋轉(zhuǎn)180°得到△BDC.現(xiàn)給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對稱圖形;
③四邊形ABCD是軸對稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,有一座拱橋圓弧形,它的跨度AB為60米,拱高PM為18米,當洪水泛濫到跨度只有30米時,就要采取緊急措施,若拱頂離水面只有4米,即PN=4米時,是否采取緊急措施?( =1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點H,G,連接DH,BG.

(1)求證:△AEH≌△CFG;

(2)連接BE,若BE=DE,則四邊形BGDH是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在不等邊△ABC中,PM⊥AB于點M,PN⊥AC于點N,且PM=PN,QAC上,PQ=QA,MP=3△AMP的面積是6,下列結(jié)論:①AMPQ+QN,②QP∥AM③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周長是7,其中正確的有( 。﹤.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O上有兩點A與P,且OA⊥OP,若A點固定不動,P點在圓上勻速運動一周,那么弦AP的長度d與時間t的函數(shù)關(guān)系的圖象可能是( )


A.①
B.③
C.①或③
D.②或④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.

(1)求這個二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出當x取何值時,y>0?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點之間的距離為|4﹣1|=   ;表示5和﹣2兩點之間的距離為|5﹣(﹣2)|=|5+2|=   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于|m﹣n|,如果表示數(shù)a和﹣2的兩點之間的距離是3,那么a=   

(2)若數(shù)軸上表示數(shù)a的點位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當a=   時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值為   

查看答案和解析>>

同步練習冊答案