【題目】先化簡再求值:當a=9時,求a+的值,甲乙兩人的解答如下:
甲的解答為:原式=a+=a+(1-a)=1.
乙的解答為:原式=a+=a+(a-1)=2a-1=17.
兩種解答中,_____的解答是錯誤的,錯誤的原因是當a=9時______.
【答案】甲;≠1-a.
【解析】
首先對根號里的數(shù)或代數(shù)式通過完全平方公式、平方差公式等進行化簡,注意在去掉根號時,要對化簡后的結果帶上絕對值,再根據(jù)已知參數(shù)的值看看絕對值里的代數(shù)式與零的大小關系,最后去掉絕對值即可得到最簡結果,再將參數(shù)的值代入即可.
解:甲是錯誤的,,沒有根據(jù)a的取值正確的去掉絕對值符號.
理由:a+,由完全平方式,得a+,化簡,得a+|1a|,
當a=9時,1-a<0,故對a+|1a|去掉絕對值符號,得a-1+a,
合并同類項,得:2a-1,
將a=9代入2a-1,得2×9-1=17
所以甲的答案錯誤,錯誤的原因是沒有根據(jù)a的取值正確的去掉絕對值符號.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時間之間的函數(shù)關系式是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.求證:BF=2AE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如下圖, AB∥CD,點E,F分別為AB,CD上一點.
(1) 在AB,CD之間有一點M(點M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關系. 請補全圖形,并在圖形下面寫出相應的數(shù)量關系,選其中一個進行證明.
(2)如下圖,在AB,CD之間有兩點M,N,連接ME,MN,NF,請選擇一個圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關系(不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表中有兩種移動電話計費方式:
月使用費(元) | 主叫限定時間(分鐘) | 主叫超時費(元/分鐘) | 被叫 | |
方式一 | 65 | 160 | 0.25 | 免費 |
方式二 | 100 | 380 | 0.19 | 免費 |
說明:月使用費固定收取,主叫不超限定時間不再收費,主叫超時部分加收超時費;被叫免費.
(1)若李杰某月主叫通話時間為200分鐘則他按方式一計費需 元,按方式二計費需 元;若他按方式二計費需103.8元,則主叫通話時間為 分鐘;
(2)是否存在某主叫通話時間t(分鐘),按方式一和方式二的計費相等,若存在,請求出t的值;若不存在,請說明理由;
(3)請你通過計算分析后,直接給出當月主叫通話時間t(分鐘)滿足什么條件時,選擇方式一省錢;當每月主叫通話時間t(分鐘)滿足什么條件時,選擇方式二省錢.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE⊥AB于O,若∠BOD=40°,則不正確的結論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù) 的圖象與性質,下列說法正確的是( )
A.對稱軸是直線 ,最小值是
B.對稱軸是直線 ,最大值是
C.對稱軸是直線 ,最小值是
D.對稱軸是直線 ,最大值是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個結淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com