【題目】對于二次函數(shù) 的圖象與性質,下列說法正確的是( )
A.對稱軸是直線 ,最小值是
B.對稱軸是直線 ,最大值是
C.對稱軸是直線 ,最小值是
D.對稱軸是直線 ,最大值是
科目:初中數(shù)學 來源: 題型:
【題目】觀察:從2開始,連續(xù)的偶數(shù)相加,它們的和的情況如下圖:
(1)當加數(shù)m的個數(shù)為n時,和(S)與n之間有什么樣的數(shù)量關系,用公式表示出來;
(2)按此規(guī)律計算(寫出必要的演算過程):
①2+4+6+…+300的值;
②162+164+166+…+400的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡再求值:當a=9時,求a+的值,甲乙兩人的解答如下:
甲的解答為:原式=a+=a+(1-a)=1.
乙的解答為:原式=a+=a+(a-1)=2a-1=17.
兩種解答中,_____的解答是錯誤的,錯誤的原因是當a=9時______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個的方格棋盤的格里放了一枚棋子,如果規(guī)定棋子每步只能向上、向下或向左、向右走一格,那么這枚棋子走如下的步數(shù)后能到達格的是( ).
A. 7 B. 14 C. 21 D. 28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC⊥BD于點E,AB=BC,F為四邊形ABCD外一點,且∠FCA=90°,∠CBF=∠DCB.
(1)求證:四邊形DBFC是平行四邊形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點,點D在⊙O上,BD平分∠OBC,DE⊥AC于點E.
(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(理解新知)
如圖①,已知,在內(nèi)部畫射線,得到三個角,分別為、、,若這三個角中有一個角是另外一個角的2倍,則稱射線為的“2倍角線”
(1)角的平分線 這個角的“2倍角線”;(填“是”或“不是”)
(2)若,射線為的“2倍角線”,則 ;
(解決問題)
如圖②,已知,射線從出發(fā),以每秒的速度繞點逆時針旋轉:射線從出發(fā),以每秒的速度繞點順時針旋轉,射線、同時出發(fā),當一條射線回到出發(fā)位置的時候,整個運動隨之停止.設運動的時間為.
(3)當射線、旋轉到同一條直線上時,求的值;
(4)若、、三條射線中,一條射線恰好是以另外兩條射線為邊的角的“2倍角線”,直接寫出所有可能的的值.(本題中所研究的角都是小于等于的角.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為AB上一點,且AN=2,∠BAC的平分線交BC于點D,M是AD上的動點,連結BM,MN,則BM+MN的最小值是( 。
A. 8 B. 10 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4.
(1)若BC=2,求AB的長;
(2)若BC=a,AB=c,求代數(shù)式(c﹣2)2﹣(a+4)2+4(c+2a+3)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com