【題目】如圖,AB⊙O的直徑,CB,CD分別切⊙O于點(diǎn)B,D,CDBA的延長線于點(diǎn)E,CO的延長線交⊙O于點(diǎn)G,EF⊥OG于點(diǎn)F。

(1)求證:∠FEB=∠ECF

(2)BC= 12, DE=8 EA的長。

【答案】(1)詳見解析;(2)4.

【解析】

1)利用切線長定理得到OC平分∠BCE,即ECF=BCO,利用切線的性質(zhì)得OBBC,則∠BCO+COB=90°,由于∠FEB+FOE=90°,∠COB=FOE,所以∠FEB=ECF

2)連接OD,如圖,利用切線長定理和切線的性質(zhì)得到CD=CB=12,ODCE,則CE=20,利用勾股定理可計(jì)算出BE=16,設(shè)O的半徑為r,則OD=OB=r,OE=16r.在RtODE中,根據(jù)勾股定理得r2+82=16r2,解得r=6,即可得出EA的長.

1)∵CBCD分別切⊙O于點(diǎn)BD,∴OBBC,OC平分∠BCE,即∠ECF=BCO

∵∠OBC=90°,∴∠BCO+COB=90°

EFOG,∴∠FEB+FOE=90°

又∵∠COB=FOE,∴∠FEB=BCO=ECF

(2) 連接OD

CB、CD分別切⊙O于點(diǎn)B,D,∴ CD=CB=12ODCE,∴CE=CD+DE=12+8=20

Rt△BCE中,

設(shè)⊙O的半徑為r,則OD=OB=r,OE=16-r

Rt△ODE中,,解得:r=6

EA=EB2r=16 12= 4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個(gè)單位長度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)

(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1

(2)畫出將△ABC 繞原點(diǎn) O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;

(3)求(2)中線段 OA掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,二次函數(shù)的圖像交軸正半軸于點(diǎn),頂點(diǎn)為,一次函數(shù)的圖像交軸于點(diǎn),交軸于點(diǎn),的正切值為.

(1)求二次函數(shù)的解析式與頂點(diǎn)坐標(biāo);

(2)將二次函數(shù)圖像向下平移個(gè)單位,設(shè)平移后拋物線頂點(diǎn)為,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQBC交于點(diǎn)G,則△EBG的周長是 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;

(3)若點(diǎn)P是軸上一動點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E分別是⊙O兩條半徑OA、OB的中點(diǎn),

1)求證:CD=CE

2)若∠AOB=120°,OA=x,四邊形ODCE的面積為y,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)P為第一象限拋物線上一點(diǎn),且∠DAP=45°,則點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時(shí),yx的增大而減小; ④3a+c>0;⑤任意實(shí)數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是( 。

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

同步練習(xí)冊答案