已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=
(1)求EM的長(zhǎng);
(2)求sin∠EOB的值.

【答案】分析:(1)根據(jù)圓周角定理及勾股定理可求出CE的長(zhǎng),再由相交弦定理求出EM的長(zhǎng)即可;
(2)由(1)中所求EM的長(zhǎng)判斷出△OEM為等腰三角形,過E作EF⊥OM,根據(jù)等腰三角形的性質(zhì)及勾股定理可求出OF,EF的長(zhǎng),進(jìn)而求出sin∠EOB的值.
解答:解:如圖,(1)∵DC為⊙O的直徑,
∴DE⊥EC(1分)
∵DC=8,DE=
∴EC=
==7(2分)
設(shè)EM=x,由于M為OB的中點(diǎn),
∴BM=2,AM=6,
由相交弦定理AM•MB=EM•CM,(3分)
即6×2=x(7-x),x2-7x+12=0
解這個(gè)方程,得x1=3,x2=4
∵EM>MC
∴EM=4;(5分)

(2)∵OE=EM=4
∴△OEM為等腰三角形
過E作EF⊥OM,垂足為F,則OF=OM=1
∴EF===
∴sin∠EOB=.(8分)
點(diǎn)評(píng):本題考查的是圓周角定理及等腰三角形的性質(zhì),屬中學(xué)階段的基本內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O精英家教網(wǎng)于點(diǎn)E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點(diǎn)C、F為頂點(diǎn)作矩形CDEF,頂點(diǎn)D、E在⊙O的劣弧
AB
上,OM⊥DE于點(diǎn)M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在半徑為2的半圓O中,半徑OA垂直于直徑BC,點(diǎn)E與點(diǎn)F分別在弦AB、AC精英家教網(wǎng)上滑動(dòng)并保持AE=CF,但點(diǎn)F不與A、C重合,點(diǎn)E不與A、B重合.
(1)求四邊形AEOF的面積.
(2)設(shè)AE=x,S△OEF=y,寫出y與x之間的函數(shù)關(guān)系式,求x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直徑AB延長(zhǎng)線上的點(diǎn),且BP=12,求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在半徑為8的⊙O中,AB,CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=2
15

(1)求證:
AM
EM
=
MC
MB
;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案