6.關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實數(shù)根x1、x2
(1)求實數(shù)k的取值范圍;
(2)若x1+x2=x1•x2,求k的值.

分析 (1)由方程的系數(shù)結(jié)合根的判別式即可得出關(guān)于k的一元一次不等式,解之即可得出實數(shù)k的取值范圍;
(2)由根與系數(shù)的關(guān)系可得x1+x2=-(2k+1)、x1•x2=k2+1,結(jié)合x1+x2=x1•x2即可得出關(guān)于k的一元二次方程,解之即可得出k值,再根據(jù)k>$\frac{3}{4}$即可確定k的值.

解答 解:(1)∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實數(shù)根,
∴△=(2k+1)2-4(k2+1)=4k-3>0,
解得:k>$\frac{3}{4}$.
∴實數(shù)k的取值范圍為k>$\frac{3}{4}$.
(2)由根與系數(shù)的關(guān)系,得:x1+x2=-(2k+1),x1•x2=k2+1,
∵x1+x2=x1•x2,
∴-(2k+1)=k2+1,
方程無解.

點評 本題考查了根與系數(shù)的關(guān)系、根的判別式以及解一元二次方程,根據(jù)根與系數(shù)的關(guān)系得出關(guān)于k的一元二次方程是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.利用直尺畫圖(先用鉛筆畫圖,然后再用墨水筆將符合條件的圖形畫出).
(1)利用圖1中的網(wǎng)格,過P點畫直線AB的平行線和垂線;
(2)平移圖(2)網(wǎng)格中的三條線段AB、CD、EF,使平移后三條線段首尾順次相接組成一個三角形;
(3)如果每個方格的邊長是單位1,那么圖(2)中組成的三角形的面積等于3.5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小明進(jìn)行摸牌游戲:
(1)如果小明隨機地從中抽出一張撲克牌,則牌面數(shù)字恰好為4的概率=$\frac{1}{4}$;牌面數(shù)字恰好為5的概率=$\frac{1}{2}$;
(2)如果小明從中隨機同時抽取兩張撲克牌,請用樹狀圖或表格的方法列出所有可能的結(jié)果并求出兩張牌面數(shù)字之和為奇數(shù)時的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知:如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點B的坐標(biāo)為(2,0),點A在第一象限內(nèi)
(1)求點A的坐標(biāo)
(2)如圖,將△OAB沿O到A的方向平移4個單位至△O′A′B′的位置,即AA′=4,求點B′的坐標(biāo)
(3)如圖,將△OAB沿O到A的方向平移n個單位至△O′A′B′的位置,若平移后的B′點橫坐標(biāo)為2017,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖是由非負(fù)偶數(shù)排成的數(shù)陣:

(1)寫出圖中“H”形框中七個數(shù)的和與中間數(shù)的關(guān)系;
(2)在數(shù)陣中任意做一個這樣的“H”形框,(1)中的關(guān)系是否仍成立?并寫出理由;
(3)用這樣的“H”形框能框出和為2023的七個數(shù)嗎?如果能,求出這七個數(shù)中間的數(shù);如果不能,請寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.
(1)如圖1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的長;
(2)將圖1中的△ADC繞點D順時針旋轉(zhuǎn)一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點,連接AC,BN,PQ,求證:BN=$\sqrt{2}$PQ;
(3)如圖3,將△ADC繞點A順時針旋轉(zhuǎn)一定角度到△AMN,其中D的對應(yīng)點是M,C的對應(yīng)點是N,若B,M,N三點在同一直線上,H為BN中點,連接CH,猜想BM,MN,CH之間的數(shù)量關(guān)系,請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.解方程x(x-1)=2(x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.計算:
(1)8-|-15|+(-2)
(2)18-23+(-2)×3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計算:
(1)$\sqrt{2}$($\sqrt{3}$+$\sqrt{5}$);
(2)($\sqrt{80}$+$\sqrt{40}$)÷$\sqrt{5}$;
(3)($\sqrt{5}$+3)($\sqrt{5}$+2);
(4)($\sqrt{6}$+$\sqrt{2}$)($\sqrt{6}$-$\sqrt{2}$)

查看答案和解析>>

同步練習(xí)冊答案