Loading [MathJax]/jax/output/CommonHTML/jax.js
3.如圖,拋物線y=ax2-2ax-3a交x軸于點(diǎn)A、B(A左B右),交y軸于點(diǎn)C,S△ABC=6,點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn).
(1)求拋物線的解析式;
(2)若∠PCB=45°,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q為第四象限內(nèi)拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,連接PC、AQ,當(dāng)PC=59AQ時(shí),求點(diǎn)P的坐標(biāo)以及△PCQ的面積.

分析 (1)利用三角形的面積求出a即可得出拋物線解析式;
(2)先判斷出∠OBC=45°,而點(diǎn)P在第一象限,所以得出CP∥OB即:點(diǎn)P和點(diǎn)C的縱坐標(biāo)一樣,即可確定出點(diǎn)P坐標(biāo);
(3)根據(jù)點(diǎn)P在第一象限,點(diǎn)Q在第二象限,且橫坐標(biāo)相差1,進(jìn)而設(shè)出點(diǎn)P(3-m,-m2+4m)(0<m<1);得出點(diǎn)Q(4-m,-m2+6m-5),得出CP2,AQ2,最后建立方程求解即可.

解答 解:(1)∵拋物線y=ax2-2ax-3a=a(x+1)(x-3),
∴A(-1,0),B(3,0),C(0,-3a),
∴AB=4,OC=|-3a|=|3a|,
∵S△ABC=6,
12AB•OC=6,
12×4×|3a|=6,
∴a=-1或a=1(舍),
∴拋物線的解析式為y=-x2+2x+3;
(2)由(1)知,B(3,0),C(0,-3a),
∴C(0,3),
∴OB=3,OC=3,
∴△OBC是等腰直角三角形,
∴∠BCO=∠OBC=45°,
∵點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),且∠PCB=45°,
∴PC∥OB,
∴P點(diǎn)的縱坐標(biāo)為3,
由(1)知,拋物線的解析式為y=-x2+2x+3,
令y=3,∴-x2+2x+3=3,
∴x=0(舍)或x=2,
∴P(2,3);
(3)如圖2,過點(diǎn)P作PD⊥x軸交CQ于D,設(shè)P(3-m,-m2+4m)(0<m<1);
∵C(0,3),
∴PC2=(3-m)2+(-m2+4m-3)2=(m-3)2[(m-1)2+1],
∵點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,
∴Q(4-m,-m2+6m-5),
∵A(-1,0).
∴AQ2=(4-m+1)2+(-m2+6m-5)2=(m-5)2[(m-1)2+1]
∵PC=59AQ,
∴81PC2=25AQ2,
∴81(m-3)2[(m-1)2+1]=25(m-5)2[(m-1)2+1],
∵0<m<1,
∴[(m-1)2+1]≠0,
∴81(m-3)2=25(m-5)2,
∴9(m-3)=±5(m-5),
∴m=12或m=267(舍),
∴P(5274),Q(72,-94),
∵C(0,3),
∴直線CQ的解析式為y=-32x+3,
∵P(5274),
∴D(52,-34),
∴PD=74+34=52
∴S△PCQ=S△PCD+S△PQD=12PD×xP+12PD×(xQ-xP)=12PD×xQ=12×52×72=358

點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積公式,平行線的性質(zhì)和判定,解本題的關(guān)鍵是判斷出PC∥OB,難點(diǎn)是設(shè)出點(diǎn)P的坐標(biāo),是一道比較好的中考常考題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.在矩形ABCD中,BC=6,點(diǎn)E是AD邊上一點(diǎn),連接BE,∠ABE=30°,BE=DE,連接BD.點(diǎn)P在線段ED運(yùn)動(dòng),過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q.
(1)如圖1,設(shè)PD=x,以P、Q、D三點(diǎn)為頂點(diǎn)所構(gòu)成的三角形面積為y,求y與x的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到線段ED的中點(diǎn)時(shí),連接QC,過點(diǎn)P作PF⊥QC,垂足為F,PF交對(duì)角線BD于點(diǎn)G,求線段PG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知長方形紙片ABCD,點(diǎn)E是AB的中點(diǎn),點(diǎn)G是BC上一點(diǎn),∠BEG=60°.沿直線EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖是小強(qiáng)用八塊相同的小立方體搭成的一個(gè)幾何體,從正面、左面和上面觀察這個(gè)幾何體,請(qǐng)你在下面相應(yīng)的位置分別畫出你所看到的幾何體的形狀圖(在答題卡上畫完圖后請(qǐng)用黑色簽字筆描圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系中,射線OA交反比例函數(shù)y=1x(x>0)圖象于點(diǎn)P,點(diǎn)R為反比例函數(shù)y=1x(x>0)圖象上的另一點(diǎn),且PR=2OP,分別過點(diǎn)P、R作x軸、y軸的平行線,兩線相交于點(diǎn)M(a,b),直線MR交x軸于點(diǎn)B,過點(diǎn)P作y軸的平行線分別交直線OM和x軸于點(diǎn)Q、H,連接RQ.
(1)求出點(diǎn)P、R的坐標(biāo)和直線OM 的解析式(用含a、b 的式子表示);
(2)試探究∠MOB和∠AOB之間的數(shù)量關(guān)系,并說明理由;
(3)如果將反比例函數(shù)y=1x(x>0)改為y=kx(k>0,x>0)時(shí),上述(2)中的結(jié)論是否成立是(填“是”或“否”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+2交x正半軸 于點(diǎn)A,交x軸負(fù)半軸于點(diǎn)B,交y軸于點(diǎn)C,OB=OC,連接AC,tan∠OCA=2.
(1)求拋物線的解析式;
(2)點(diǎn)P是第三象限拋物線y=ax2+bx+2上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線交直線AC于點(diǎn)D,設(shè)PD的長為d,點(diǎn)P的橫坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PA,PC,當(dāng)△ACP的面積為30時(shí),將△APC沿AP折疊得△APC′,點(diǎn)C′為點(diǎn)C的對(duì)應(yīng)點(diǎn),求點(diǎn)C′坐標(biāo)并判斷點(diǎn)C′是否在拋物線y=ax2+bx+2上,說明理由.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF,現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)邊CD′恰好經(jīng)過EF的中點(diǎn)H時(shí),求旋轉(zhuǎn)角α的大��;
(2)如圖2,G為BC中點(diǎn),且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,△DCD′與△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大�。蝗舨荒�,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.一次函數(shù)y=-33x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以AB為邊在第一象限內(nèi)做等邊△ABC
(1)求△ABC的面積和點(diǎn)C的坐標(biāo);
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,12),試用含a的代數(shù)式表示四邊形ABPO的面積.
(3)在x軸上是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如果單項(xiàng)式-xyb+113xa-2y3是同類項(xiàng),那么(b-a)2016=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹