【題目】如圖,已知EC∥AB,∠EDA=∠ABF

(1)求證:四邊形ABCD是平行四邊形;

(2)求證:=OEOF

【答案】(1)證明見解析;(2)證明見解析

【解析】

試題分析:(1)由EC∥AB,∠EDA=∠ABF,可證得∠DAB=∠ABF,即可證得AD∥BC,則得四邊形ABCD為平行四邊形;

(2)由EC∥AB,可得,由AD∥BC,可得,等量代換得出,即=OEOF.

試題解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四邊形ABCD為平行四邊形;

(2)∵EC∥AB,∴△OAB∽△OED,∴,∵AD∥BC,∴△OBF∽△ODA,∴,∴,∴=OEOF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC

應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在二次函數(shù)y=﹣x2+2x+1的圖象中,若yx的增大而減少,則x的取值范圍是( 。

A.x1B.x1C.x<﹣1D.x>﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點A在點B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里

(1)求出此時點A到島礁C的距離;

(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè),當(shù)竭_點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空:x2+10x+=(x+)2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明做了一個角平分儀ABCD,其中AB=AD,BC=DC.將儀器上的點A與∠PRQ的頂點R重合,調(diào)整ABAD,使它們分別落在角的兩邊上,過點A,C畫一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得ABC≌△ADC,這樣就有∠QAE=PAE.則說明這兩個三角形全等的依據(jù)是( )

A. SAS B. ASA C. AAS D. SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016江西。設拋物線的解析式為 ,過點B1 (1,0 )作x軸的垂線,交拋物線于點A1(1,2 );過點B2 (1,0 )作x軸的垂線,交拋物線于點A2 , ;過點 ,0 (n為正整數(shù) )作x軸的垂線,交拋物線于點 ,連接 ,得直角三角形

(1)求a的值;

(2)直接寫出線段 ,的長(用含n的式子表示);

(3)在系列Rt 中,探究下列問題:

當n為何值時,Rt是等腰直角三角形?

設1k<mn (k,m均為正整數(shù)),問是否存在Rt與Rt相似?若存在,求出其相似比;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2-y2=20,求[(x-y)2+4xy][(x+y)2-4xy]的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列各數(shù)填在相應的大括號里:

1, —5, , —4.2, 0, , 10,—,

整數(shù):{ … }

非負整數(shù):{ … }

分數(shù):{ … }

負分數(shù):{ … }

有理數(shù):{ … }

非負有理數(shù):{ … }

查看答案和解析>>

同步練習冊答案