【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明統(tǒng)計了他家今年5月份打電話的次數(shù)及通話時間,并列出了頻數(shù)分布表:
通話時間x/分鐘 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
頻數(shù)(通話次數(shù)) | 20 | 16 | 9 | 5 |
則5月份通話次數(shù)中,通話時間不超過15分鐘的所占百分比是( 。
A. 10% B. 40% C. 50% D. 90%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點和是反比例函數(shù)圖象上兩點,若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點在直線AB上,如圖2所示,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時,MN∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB高16米,遠處有一塔CD,某人在樓底B處測得塔頂?shù)难鼋菫?8.5°,爬到樓頂A處測得塔頂?shù)难鼋菫?2°,求塔高CD及大樓與塔之間的距離BD的長.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,點M、N分別在邊OA、OB上,且OM=1,ON=3,點P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長均為1的7×7網(wǎng)格圖中,格點上有A,B,C,D,E五個定點,如圖所示,一個動點P從點E出發(fā),繞點A逆時針旋轉(zhuǎn)90°,之后該動點繼續(xù)繞點B,C,D逆時針90°后回到初始位置,點P運轉(zhuǎn)路線的總長是 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.
通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.
證法1:如圖1,延長BC到D,過C畫CE∥BA.
∵BA∥CE(作圖2所知),
∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),
∴∠A+∠B+∠ACB=180°(等量代換).
如圖3,過BC上任一點F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上、、三點所代表的數(shù)分別是、、,且.若下列選項中,有一個表示、、三點在數(shù)軸上的位置關(guān)系,則此選項為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
你認為圖中大正方形的邊長為________;小正方形(陰影部分)的邊長為________.(用含、的代數(shù)式表示)
仔細觀察圖,請你寫出下列三個代數(shù)式:,,所表示的圖形面積之間的相等關(guān)系,并選取適合、的數(shù)值加以驗證.
已知,.求代數(shù)式的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com