【題目】在北海市創(chuàng)建全國文明城活動中,需要20名志愿者擔(dān)任“講文明樹新風(fēng)”公益廣告宣傳工作,其中男生8人,女生12人.
(1)若從這20人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲擔(dān)任,否則乙擔(dān)任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
【答案】
(1)
解:∵現(xiàn)有20名志愿者準(zhǔn)備參加某分會場的工作,其中男生8人,女生12人,
∴從這20人中隨機選取一人作為聯(lián)絡(luò)員,選到女生的概率為 = ,
(2)
解:畫樹狀圖
如圖所示:
牌面數(shù)字之和的所有可能結(jié)果為:5,6,7,5,7,8,6,7,9,7,8,9,共12種,其中和為偶數(shù)的有:6,8,6,8,
故甲參加的概率為P(和為偶數(shù))= = ,
而乙參加的概率為P(和為奇數(shù))= .
因為 ≠ ,所以游戲不公平.
【解析】(1)直接利用概率公式求出即可;(2)利用樹狀圖表示出所有可能進而利用概率公式求出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一副撲克牌中取出的兩組牌,分別是紅桃1,2,3和方塊1,2,3,將它們的背面朝上分別重新洗牌后,再從兩組牌中各摸出一張.
(1)用列表或樹狀圖的方法表示此游戲所有可能出現(xiàn)的結(jié)果;
(2)求摸出的兩張牌的牌面數(shù)字之和不小于4的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+x+c的圖像與x軸的一個交點為(2,0),則它與x軸的另一個交點坐標(biāo)是( )
A.(1,0)
B.(﹣1,0)
C.(2,0)
D.(﹣3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為測量某特種車輛的性能,研究制定了行駛指數(shù)P,P=K+1000,而K的大小與平均速度v(km/h)和行駛路程s(km)有關(guān)(不考慮其他因素),K由兩部分的和組成,一部分與v2成正比,另一部分與sv成正比.在實驗中得到了表格中的數(shù)據(jù):
速度v | 40 | 60 |
路程s | 40 | 70 |
指數(shù)P | 1000 | 1600 |
(1)用含v和s的式子表示P;
(2)當(dāng)行駛指數(shù)為500,而行駛路程為40時,求平均速度的值;
(3)當(dāng)行駛路程為180時,若行駛指數(shù)值最大,求平均速度的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的盒子中有2枚黑棋,x枚白棋,這些棋子除顏色外無其他差別,現(xiàn)從盒中隨機摸出一枚棋子(不放回),再隨機摸出一枚棋子.
(1)若“摸出兩枚棋子的顏色都是白色”是不可能事件,請寫出符合條件的一個x值;
(2)當(dāng)x=2時,“摸出兩枚棋子的顏色相同”與“摸出兩枚棋子的顏色不同”的概率相等嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s= ,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關(guān)部門接到求救信號后,立即調(diào)遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當(dāng)飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠(yuǎn)?(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com