【題目】如圖,△ABC中,AB=AC=12厘米,BC=9厘米,點D為AB的中點,如果點P在線段BC上以v厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動。若點Q的運動速度為3厘米/秒,則當(dāng)△BPD與△CQP全等時,v的值為_____________
【答案】2.25或3
【解析】
分兩種情況討論:①若△BPD≌△CPQ,根據(jù)全等三角形的性質(zhì),則BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根據(jù)速度、路程、時間的關(guān)系即可求得;②若△BPD≌△CQP,則CP=BD=6厘米,BP=CQ,得出 ,解得:v=3.
解:∵△ABC中,AB=AC=12厘米,點D為AB的中點,
∴BD=6厘米,
若△BPD≌△CPQ,則需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),
∵點Q的運動速度為3厘米/秒,
∴點Q的運動時間為:6÷3=2(s),
∴v=4.5÷2=2.25(厘米/秒);
若△BPD≌△CQP,則需CP=BD=6厘米,BP=CQ,
則有 ,
解得:v=3
∴v的值為:2.25或3厘米/秒
故答案為:2.25或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC繞點C順時針旋轉(zhuǎn)一定角度得到△DEC,點D恰好落在AB邊上,連接AE. 求:
(1)旋轉(zhuǎn)角的度數(shù);
(2)AE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某長途汽車客運公司規(guī)定旅客可以免費攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時,需付的行李費y(元)與行李質(zhì)量x(kg)之間的函數(shù)表達(dá)式為,這個函數(shù)的圖像如圖所示,求:
(1)k和b的值;
(2)旅客最多可免費攜帶行李的質(zhì)量;
(3)行李費為4~15元時,旅客攜帶行李的質(zhì)量為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD為AB邊上的高,AD=8,CD=4,BD=3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.
(1)當(dāng)t為何值時,△PDC≌△BDC;
(2)當(dāng)t為何值時,△PBC是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)械租賃公司有同一型號的機(jī)械設(shè)備40套,經(jīng)過一段時間的經(jīng)營發(fā)現(xiàn):當(dāng)每套機(jī)械設(shè)備的月租金為270元時,恰好全部租出,在此基礎(chǔ)上,當(dāng)每套設(shè)備的月租金提高10元時,這種設(shè)備就少租一套,且未租出一套設(shè)備每月需要支出費用(維護(hù)費、管理費等)20元.
(1)設(shè)每套設(shè)備的月租金為(元),用含的代數(shù)式表示未租出的設(shè)備數(shù)(套)以及所有未租出設(shè)備(套)的支出費用;
(2)租賃公司的月收益能否達(dá)到11040元?此時應(yīng)該出租多少套機(jī)械設(shè)備?每套月租金是多少元?請簡要說明理由;
(3)租賃公司的月收益能否在11040元基礎(chǔ)上再提高?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場老板對一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當(dāng)銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤,那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在建立平面直角坐標(biāo)系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標(biāo)為(﹣1,0),請按要求畫圖與作答.
(1)把△ABC繞點P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com