(2003•重慶)如圖:已知⊙O1和⊙O2相交于A、B兩點,P是⊙O1上一點,PB的延長線交⊙O2于點C,PA交⊙O2于點D,CD的延長線交⊙O1于點N.
(1)過點A作AE∥CN交⊙O1于點E,求證:PA=PE;
(2)連接PN,若PB=4,BC=2,求PN的長.

【答案】分析:(1)連接AB,根據(jù)平行線的性質(zhì)和圓周角定理的推論,得到∠PAE=∠ADC=∠ABC;
再根據(jù)圓內(nèi)接四邊形的性質(zhì),得到∠ABC=∠E,從而得到∠PAE=∠E,進一步得到PA=PE;
(2)根據(jù)兩個角對應相等,易證明△PDN∽△PNA,得到PN2=PD•PA,再結(jié)合割線定理進一步求解.
解答:(1)證明:連接AB.
∵四邊形AEPB是⊙O1的內(nèi)接四邊形,
∴∠ABC=∠E.
在⊙O2中,∠ABC=∠ADC,
∴∠ADC=∠E.
又∵AE∥CN,
∴∠ADC=∠PAE.
故∠PAE=∠E.
∴PA=PE.

(2)解:連接AN、PN.
∵四邊形ANPB是⊙O1的內(nèi)接四邊形,
∴∠ABC=∠PNA.
由(1)可知,∠PDN=∠ADC=∠ABC.
∴∠PDN=∠PNA.
又∠DPN=∠NPA,
∴△PDN∽△PNA.
∴PN2=PD•PA.
又∵PD•PA=PB•PC,
∴PN===2
點評:連接公共弦,是相交兩圓常見的輔助線之一.綜合運用圓周角定理的推論、圓內(nèi)接四邊形的性質(zhì)、相似三角形的性質(zhì)和判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2003•重慶)如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:選擇題

(2003•重慶)如圖所示,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD,有下列四個結(jié)論:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四邊形ABCD是軸對稱圖形,其中正確的個數(shù)為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:2003年重慶市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•重慶)如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為( )

A.
B.
C.3
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年重慶市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•重慶)如圖,⊙O中弦AB、CD相交于點F,AB=10,AF=2.若CF:DF=1:4,則CF的長等于( )

A.
B.2
C.3
D.2

查看答案和解析>>

同步練習冊答案